Improving Data Access of J2EE Applications by
Exploiting Asynchronous Messaging and
Caching Services

Samuel Kounev

Alejandro Buchmann

Department of Computer Science
Darmstadt University of Technology

{skounev,buchmann} @informatik.tu-darmstadt.de

Abstract

The J2EE platform provides a variety of op-
tions for making business data persistent us-
ing DBMS technology. However, the integra-
tion with existing backend database systems
has proven to be of crucial importance for
the scalability and performance of J2EE ap-
plications, because modern e-business systems
are extremely data-intensive. As a result, the
data access layer, and the link between the
application server and the database server in
particular, are very susceptible to turning into
a system bottleneck. In this paper we use the
ECperf benchmark as an example of a realis-
tic application in order to illustrate the prob-
lems mentioned above and discuss how they
could be approached and eliminated. In par-
ticular, we show how asynchronous, message-
based processing could be exploited to reduce
the load on the DBMS and improve system
performance, scalability and reliability. Fur-
thermore, we discuss the major issues related
to the correct use of entity beans (the compo-
nents provided by J2EE for modelling persis-
tent data) and present a number of methods to
optimize their performance utilizing caching
mechanisms. We have evaluated the proposed
techniques through measurements and have
documented the performance gains that they
provide.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

Over the past couple of years, the Java 2 Enterprise
Edition Platform (J2EE) has established itself as ma-
jor technology for developing modern e-business solu-
tions. This success is largely due to the fact that J2EE
is not a proprietary product, but rather an industry
standard, developed as the result of a large industry
initiative led by Sun Microsystems, Inc. The goal of
this initiative was to establish a standard middleware
framework for developing enterprise-class distributed
applications in Java. Over 30 software vendors have
participated in this effort and have come up with their
own implementations of J2EE, the latter being com-
monly referred to as J2EE Application Servers.

In essence, the aim of J2EE is to enable devel-
opers to quickly and easily build scalable, reliable
and secure applications without having to develop
their own complex middleware services. Here we are
talking about services such as transaction manage-
ment, caching, resource-pooling, clustering, transpar-
ent failover, load-balancing and back-end integration
to name just a few. Many of these services are also pro-
vided by traditional Transaction Processing Monitors
(TPMs), but in a rather monolithic and highly propri-
etary manner. The J2EE platform allows developers to
leverage middleware services provided by the industry
without having to code using proprietary middleware
APIs. Developers can concentrate on the business and
application logic and rely on the J2EE Application
Server to provide the infrastructure needed for scala-
bility and performance.

However, the practice has proven that developing
highly-performant and scalable J2EE applications is
all but an easy undertaking. One of the most prob-
lematic issues to be addressed with respect to this, is
the way business data is made persistent. The J2EE
platform provides a variety of techniques for persis-
tence, most of them utilizing existing DBMS technol-

ogy. However, unless these techniques are used cor-
rectly, persistence can easily turn into a system bot-
tleneck. This is because, as already mentioned, mod-
ern e-business applications tend to be extremely data-
intensive and therefore need highly-performant and
scalable data management services. The integration
with existing backend database servers is crucial with
this respect and it is exactly in this area that process-
ing inefficiencies and system bottlenecks are usually
discovered.

In this paper we look at the data access issues and
challenges in the development of J2EE applications.
We discuss these issues in the context of ECperf - a
newly released benchmark for measuring performance
and scalability of application servers. Our goal is to
use ECperf as an example of a realistic application in
order to identify and discuss the areas in the manage-
ment of persistent data that have the greatest impact
on performance and that are susceptible to turning
into system bottlenecks.

We propose different techniques to improve perfor-
mance and eliminate data access bottlenecks. In par-
ticular, we discuss the major issues related to the cor-
rect use of entity beans as persistent data components
and present a number of methods to optimize their
performance utilizing caching mechanisms. In doing
this, we consider both issues related to the application
design, as well as issues related to the configuration of
the deployment environment. Furthermore, we show
how asynchronous, message-based processing could be
exploited to reduce the load on the DBMS, leading
to higher performance, reliability and scalability. We
have evaluated the techniques that we propose through
measurements and have documented the performance
gains they provide.

2 The J2EE Platform and Persistence

J2EE applications are made up of components called
Enterprise JavaBeans (EJBs). The EJB specifica-
tion [12], which is part of J2EE, defines the com-
ponent model for developing EJB components. An
EJB is a server-side software component containing
some application and business logic. However, un-
like other components, before EJBs can be used they
need to be deployed in an EJB Container, which is
normally provided by the J2EE application server in
use. The EJB container has complete control over the
lifecycle of its deployed EJBs and provides a number
of middleware services that they can take advantage
of. Typical services provided are transaction manage-
ment, security, persistence, resource-pooling, trans-
parent failover, clustering, load-balancing back-end in-
tegration and others. The only thing that is required
of the application developer is to create the EJB com-
ponents that define the business logic of the applica-
tion and then specify the middleware services to be
provided to these components by the container. The

services required are declared in so-called EJB Deploy-
ment Descriptors, which the application developer has
to provide together with the EJBs.

There are two types of EJB components - session
beans and entity beans. Both are implemented as
normal Java classes that are required to implement
some predefined interfaces. Session beans are used to
model business processes/services, while entity beans
are used to model business data. For example, in a
banking application, a session bean could be used to
implement the process of transferring money from one
account to another, while entity beans could be used
to represent the bank account data. The services a
session bean provides are implemented as methods of
the respective session bean class and clients can invoke
these methods in order to use the services provided.
The container can instantiate multiple instances of the
beans and in this way service multiple clients simulta-
neously.

Entity beans are the natural method provided by
J2EE for modelling persistent business data. They
provide an object-oriented model in which business
data is represented as Java objects. The actual data
being modelled is stored in attributes of the objects.
However, in order to make the entity bean data per-
sistent the container needs an underlying persistence
mechanism. Examples of persistence mechanisms that
can be used are relational databases, object databases
or file systems. In the rest of this paper we will be as-
suming that a relational DBMS is used as persistence
mechanism, since this is the most typical case.

Before the entity bean data can be made persistent,
it must be mapped to some data structures in the un-
derlying storage - the database. Data access code (typ-
ically SQL) must be provided for storing data to the
database and retrieving it. The EJB specification [12]
offers two alternatives for defining the data access code
of entity beans. In the first case, code is written by
the component developer and the bean is said to use
Bean-Managed Persistence (BMP). In the second case,
code is automatically generated by the container and
the bean is said to use Container-Managed Persistence
(CMP). As discussed in [10] both BMP and CMP have
their virtues and drawbacks. We will later discuss in
detail the issues that drive the choice between BMP
and CMP and study the way they compare in terms
of performance.

There are some fundamental benefits that entity
beans bring to the table. First, they allow a clear sep-
aration between the business logic and the persistence
logic of the application. When using entity beans the
developer doesn’t need to know about the underlying
persistence mechanism. The data access logic is decou-
pled from the application logic and application code is
much easier to understand and maintain. Second, as
will be seen later, entity beans allow the container to
cache and reuse data in the middle tier and in this way

reduce the load on the database. Finally, entity beans
can enforce control on the way data is accessed and
modified. For example, when updating an attribute on
an entity bean, the entity bean may need to perform
validation logic on its changes and possibly institute
updates on other entity beans in the application.

However, there are situations when it is not worth
to go through the entity bean layer. In particular,
when reading large amounts of read-only data for list-
ing purposes it is recommended to consider bypassing
entity beans and read data directly through JDBC in
session beans. This is sometimes termed Session Bean-
Managed Persistence (SMP) and in the above situa-
tions may lead to a significant performance speedup.
For lack of space, we do not go into further detail on
SMP but concentrate on BMP and CMP, since they
are more typical for modern J2EE applications. For
more information on SMP we refer the reader to the
”JDBC for Reading” pattern in [7].

To summarize, the J2EE platform provides 3 ma-
jor approaches for managing persistent business data:
BMP, CMP and SMP. In the next section we take
a look at some general techniques that could be ex-
ploited to optimize entity bean performance.

3 Improving Entity Bean Performance

Ever since their introduction the use of entity beans
has been the subject of heated discussions in the En-
terprise Java Community. Practice has shown that for
many e-business applications entity beans can achieve
a reasonable performance level at a very low cost in
terms of development time and effort. However, if not
configured and optimized properly, entity beans can
lead to serious performance degradation. In this sec-
tion we will discuss the most important performance
issues regarding the use of entity beans and their tun-
ing and optimization. Before we start lets take a quick
look at the lifecycle of an entity bean.

3.1 Entity Bean Lifecycle

According to the EJB specification [12] entity beans
can be in one of three possible states: "Does Not Ex-
ist”, "Pooled” or "Ready”. These states together with
the methods that are invoked upon state transitions
are illustrated in Figure 1.

An entity bean instance’s life starts when the con-
tainer creates an instance of the entity bean’s class
by calling newlnstance. The instance enters a pool of
available instances, which are normal in-memory Java
objects. While an instance is in the pool, it is not asso-
ciated with any particular entity data. In this sense, all
instances in the pool are considered equivalent and the
container may use them to execute the entity bean’s
finder methods - ejbFinds. Finder methods are used
to locate particular entity bean data in the underlying
datastore and load the data in an entity bean object

newlnstance()

unsetEntityContext() setEntityContext()

Pooled State

ejbRemove() ej:bCreate()
OR ejbPostCreate()
ibSt ejbHome() OR
& org() ejbFind() .)
ejbPassivate() ejbActivate()
ejbLoad()

Ready State

ejbLoad()
business-method()
ejbStore()

Figure 1: Lifecycle of an Entity Bean instance.

from the pool. The container loads the data by calling
the ejbLoad method on the selected instance. This
transitions the bean instance from the Pooled state
to the Ready state. The instance is now associated
with particular entity bean data and business meth-
ods can be invoked on it to manipulate (e.g. update)
this data. When the client has finished working with
the data, the container calls the ejbStore method of
the instance to update the entity bean data in the un-
derlying persistent storage. Hereafter we will use the
term entity bean to refer both to the in-memory object
instance and to the underlying persistent data that it
represents.

The purpose of the ejbLoad and ejbStore methods is
to synchronize the state of the instance with the state
of the entity in the underlying persistent storage. Typ-
ically, the container calls ejbLoad at transaction begin
in order to load the entity’s data. At transaction com-
mit the container calls ejbStore to write back updated
data to persistent storage.
3.2 Configuring the Container’s
Behavior

Caching

Having control over the times when entity beans tran-
sition from one state to another and the times when
ejbLoad and ejbStore methods are called, allows con-
tainers to cache both entity bean object instances
(with and without identity) as well as entity bean data.
For example, once data is loaded from the underlying
database into an entity object, the container can use
the object to service multiple client requests, without
further accessing the database. This reduces the load
on the DBMS and is one of the greatest benefits that
entity beans provide in general. However, in order to
take advantage of this the container’s caching behavior
needs to be configured properly.

The EJB specification defines three commit options
for entity beans - A, B and C. The latter can be
used to configure the container’s behavior with re-
spect to when transitions between states are triggered

and when ejbLoad and ejbStore methods are invoked.
This in turn determines what is cached across transac-
tions: objects without identity (commit option C), ob-
jects with identity (commit option B) or objects with
data (commit option A). However, the specification
does not mandate support for all three options and
most containers currently on the market do not sup-
port them explicitly. Nevertheless, all containers usu-
ally provide some means for configuring their caching
behavior. In the following, we will discuss the most
crucial issues related to the configuration of caching
behavior and will use BEA WebLogic Server to illus-
trate the points we make. For a detailed discussion
and performance analysis of the three different com-
mit options we refer the reader to [4].

As we already pointed out, most containers invoke
ejbLoad at the point when an entity bean is first ac-
cessed from the context of a transaction. When the
transaction commits, ejbStore is called to store up-
dates in the underlying store. This ensures that new
transactions always use the latest version of the en-
tity’s persistent data, and always write this data back
to persistent storage upon committing. In certain cir-
cumstances, however, this default behavior may lead
to excessive database calls and performance degrada-
tion. Our aim here is to configure the container in
such a way that calls to the database (ejbLoad and
ejbStore) are minimized. For example, for beans that
are never modified calls to ejbStore can be spared. In
WebLogic Server, this can be done by declaring the
bean as read-only in the ”weblogic-ejb-jar.xml” de-
ployment descriptor by use of the so-called ”read-only
concurrency strategy” [1]. While declaring a bean as
read-only completely eliminates calls to ejbStore, the
same does not apply to ejbLoad calls. This is be-
cause even though the bean is never modified through
the EJB layer, this does not prevent direct updates of
its underlying data external to the J2EE application.
Therefore, periodic calls to ejbLoad are still needed to
keep cached data up-to-date.

Access to entity beans that are only occasionally
updated can also be optimized by using the so-called
Read-Mostly Pattern [1]. The idea is to implement a
read-only entity bean and a separate read-write entity
bean, mapping both of them to the same underlying
data. To read the data, you use the read-only entity
bean. To update the data, you use the read-write en-
tity bean.

For situations where only a single server instance
ever accesses the data of a particular entity bean, call-
ing ejbLoad at the start of each transaction is unnec-
essary and can be eliminated. Only one initial call is
needed to load the data from persistent storage. After-
wards this data can be cached and accessed by many
transactions without further calls to ejbLoad. Because
no other clients or systems update the underlying stor-
age, the cached version of the entity data is always

up-to-date. In WebLogic Server this can be achieved
by setting the so-called db-is-shared deployment pa-
rameter to "false” in the bean’s deployment descriptor.

Before we finish with this section lets say a couple
of words about concurrency control for entity beans.
There are basically two options for enforcing concur-
rency control when using entity beans. The applica-
tion server can choose to use it’s own algorithm to
enforce serializability (for example by employing some
form of a locking protocol). Alternatively, the appli-
cation server can delegate concurrency control to the
underlying data store. Although having control of con-
current access to entity beans provides the container
with more possibilities to cache data, practical experi-
ence shows that delegating concurrency control to the
DBMS usually achieves better concurrency and results
in higher throughput. Therefore we recommend the
second alternative for most applications.

We are now going to examine some of the tech-
niques described above and study the performance
gains that they provide. Before doing this we intro-
duce the ECperf benchmark, which we use as a basis
to conduct our performance studies.

4 The ECperf Benchmark

ECperf is a newly released J2EE benchmark applica-
tion prototyped and built by Sun in conjunction with
application server vendors including BEA Systems,
IBM, iPlanet, Oracle, Borland, Macromedia, Hewlett
Packard and IONA. Server vendors can use ECperf to
measure, optimize and showcase their product’s per-
formance and scalability. Users, on the other hand,
can use it to gain a better understanding and insight
into the tuning and optimization issues surrounding
the development of modern J2EE applications. This
is exactly what we tried to achieve by means of the
ECperf benchmark. We deployed ECperf on a BEA
Web Logic Server and conducted a number of experi-
ments with it. Our aim was to evaluate the different
persistence techniques in J2EE and study how their
performance could be improved.

ECperf is composed of a specification and a toolkit.
The specification [14] describes the benchmark as a
whole, the modeled workload, the running and scaling
rules, and finally the operation and reporting require-
ments. The toolkit provides the necessary code to run
the benchmark and measure performance.

The ECperf workload is based on a large distributed
application claimed to be big and complex enough to
represent a real-world e-business system [14]. The
ECperf designers have chosen manufacturing, supply
chain management, and order/inventory as the ”sto-
ryline” of the business problem modeled. As the de-
signers themselves describe it [14], this is a meaty,
industrial-strength distributed problem, that is heavy-
weight, mission-critical and requires the use of a pow-
erful and scalable infrastructure. Most importantly,

it requires the use of interesting middleware services,
including distributed transactions, clustering, load-
balancing, fault-tolerance, caching, object persistence,
and resource pooling among others. It is those services
of application servers that are stressed and measured
by the ECperf benchmark.

ECperf models businesses by using 4 domains [14]:

1. The Customer Domain which handles customer
orders and interactions.

2. The Manufacturing Domain which performs ” Just
In Time” manufacturing operations.

3. The Supplier Domain which handles interactions
with external suppliers.

4. The Corporate Domain which is the master keeper
of customer, product, and supplier information.

Figure 2 illustrates the 4 ECperf business domains
and gives some examples of typical transactions run in
each domain.

CUSTOMER DOMAIN CORPORATE DOMAIN

Order Entry Application _Management'of

Transactions:
- Place Order
- Change Order
- Get Order Status
- Cancel Order
- Get Customer Status

Parts Information

Transactions:
- Check Credit
- Get Percent Discount
- New Customer

I i

Management of Interactions

- Planned Lines

- Large Order Line with Suppliers
Transactions: <>
- Schedule Work Order Transactions:

- Update Work Order
- Complete Work Order
- Create Large Order

- Send Purchase Order
- Deliver Purchase Order

MANUFACTURING DOMAIN SUPPLIER DOMAIN

Figure 2: The ECperf Business Model

We include a brief overview of these four domains
as they are described in the ECperf specification itself
[14]:

4.1 The Customer Domain

Work in the customer domain is OLTP in nature.
An order entry application runs in this domain whose
functionality includes adding new orders, changing an
existing order and retrieving the status of a particular
order or all orders of a particular customer. Orders are
placed by individual customers as well as by distrib-
utors. Orders placed by distributors are called large
orders.

4.2 The Manufacturing Domain

This domain models the activity of production lines
in a manufacturing plant. Products manufactured by

the plant are called widgets. Manufactured widgets
are also called assemblies, since they are comprised
of components. The Bill of Materials (BOM) for an
assembly indicates the components needed for pro-
ducing it. Both assemblies and components are com-
monly referred to as parts. There are two types of
production lines, namely planned lines and large order
lines. Planned lines run on schedule and produce a
pre-defined number of widgets. Large order lines run
only when a large order is received from a customer
such as a distributor. Manufacturing begins when a
work order enters the system. Each work order is for a
specific quantity of a particular type of widget. When
a work order is created, the Bill of Materials for the
corresponding type of widget is retrieved and the re-
quired parts are taken out of inventory. As inventory
of parts gets depleted, suppliers need to be located
and purchase orders (POs) need to be sent out. This
is done by contacting the supplier domain.

4.3 The Supplier Domain

This domain is responsible for interactions with sup-
pliers. The supplier domain decides which supplier to
choose based on the parts that need to be ordered, the
time in which they are required and the price quoted
by suppliers. The company sends a purchase order
(PO) to the selected supplier. When parts are received
from the supplier, the supplier domain sends a message
to the manufacturing domain to update inventory.

4.4 The Corporate Domain

This domain manages the global list of customers,
parts and suppliers. Credit information, including
credit limits, about all customers is kept solely in a
database in the corporate domain. This is to provide
maximal security and privacy.

4.5 The ECperf Application Design

All the activities and processes in the four domains de-
scribed above are implemented using EJB components
(adhering to the EJB 1.1 specification [12]) assembled
into a single J2EE application which is deployed on the
System Under Test (SUT). The only exception is for
the interactions with suppliers which are implemented
using a special Java servlet called Supplier Emulator
that runs on a separate machine. The latter is as-
sembled into a separate application which is deployed
in a Java-enabled web server. The supplier emulator
provides the supplier domain with a way to emulate
the process of sending and receiving purchase orders
to/from suppliers. The supplier emulator accepts a
purchase order from the BuyerSes session bean in the
supplier domain, processes the purchase order, and
then delivers the items requested to the ReceiverSes
session bean after sleeping for an amount of time based

on the lead time of the component. This interaction is
depicted in Figure 3:

ReceiverSes O&/,b
EJB RN

Emulator
Servlet

Web Container

BuyerSes
)I;JB “690
=

EJB Container

Figure 3: Interaction with the Supplier Emulator

The workload generator is implemented using a
multithreaded Java application called ECperf Driver.
The latter is designed to run on multiple client ma-
chines, using an arbitrary number of Java Virtual Ma-
chines to ensure that it has no inherent scalability lim-
itations. A relational DBMS is used for data persis-
tence and all data access operations use entity beans
which are mapped to tables in the ECperf database.
Both container (CMP) and bean-managed (BMP) per-
sistence is supported.

The throughput of the ECperf benchmark is driven
by the activity of the order entry and manufactur-
ing applications. The throughput of both applica-
tions is directly related to the chosen Transaction In-
jection Rate (Ir). The latter determines the num-
ber of order entry requests generated and the num-
ber of work orders scheduled per second. Note, that
the relationship between the injection rate and the to-
tal number of transaction requests (order entry and
work order transactions) that are generated per sec-
ond is not straightforward. We refer the reader to
the ECperf specification for further information [12].
In any case, to increase throughput, the injection
rate needs to be increased. The summarized perfor-
mance metric provided after running the benchmark
is called BBops/min and it denotes the average num-
ber of successful Benchmark Business OPerationS per
minute completed during the measurement interval.
BBops/min is composed of the total number of busi-
ness transactions completed in the customer domain,
added to the total number of work orders completed
in the manufacturing domain, normalized per minute.
The benchmark can be run in two modes. In the first
mode only the order entry application in the customer
domain is run, while in the second mode both the or-
der entry and the manufacturing applications are run.
Because of lack of space, we will not go into further
details on the ECperf EJBs, the database model and
transactions implemented. Readers interested in more
details are referred to [14].

4.6 Our ECperf Deployment Environment

We deployed ECperf on the environment depicted in
Figure 4.

Client PC running the ECperf Driver
RedHat Linux 7.1, 192 MB Main Memory

SUT - System Under Test

ECperf EJBs deployed on Web Logic Server 6.1
Solaris 7, SUN Ultra Sparc Il (Ultra 60)

2 x 360 MHz CPUs, 2 GB RAM

RDBMS: Oracle 9i (9.0.1) Database Server
Hosting the ECperf Database

Red Hat Linux 7.2

1x 1,7 GHz AMD XP CPU, 1 GB RAM

ECperf Supplier Emulator
Emulator deployed on Web Logic Server 6.1

Solaris 7, SUN Ultra Sparc Il (Ultra 60)
1 x 360 MHz CPU, 1 GB RAM

Supplier Emulator

Figure 4: ECperf Deployment Environment

Now that we have introduced the ECperf applica-
tion, lets return to entity beans and see how they are
used in ECperf.

5 Evaluating Entity Bean Performance
using ECperf

In this section we compare Bean-Managed Persistence
(BMP) with Container-Manager Persistence (CMP) in
terms of performance and discuss the issues that drive
the choice between them. In addition, we provide some
guidelines for improving BMP performance.

ECperf offers both BMP and CMP versions of all
entity beans used. We conducted experiments, first
with BMP and then with CMP, in order to gain an
understanding of how big the performance difference
was. We were quite surprised that ECperf performed
much worse with BMP than with CMP. Monitoring
the database server, we noticed that in the BMP ver-
sion of ECperf, entity bean data was being written to
the database at every transaction commit, even if no
changes had been made. We modified the BMP code
to check if data had been modified and only in this
case update the database [11]. As a result throughput
soared by a factor of 2, but performance was still worse
than with CMP.

Figure 5 shows the ECperf results that we obtained
with our optimized BMP code compared to the results
that we obtained with CMP. In these experiments we
run the order entry application under different transac-
tion injection rates. The first graph compares average
throughput (order entry transactions per min) relative
to the average throughput achieved when running with
an injection rate of 10. The second graph shows the
average transaction commit time (in ms) of the order
entry transactions. As we can see CMP performs sub-
stantially better as we raise the injection rate beyond
30.

B BMP OCMP

Relative Throughput
N
I

10 20 30 40 50

Transaction Injection Rate

1800
1600
1400
1200
1000
800
600
400
200 +

(EE HESH LESE LEEE S

10 20 30 40 50

Average Commit Time (ms)

Transaction Injection Rate

Figure 5: ECperf Results with BMP vs. CMP

As argued in [11] there are some important reasons
for this performance difference. Most importantly, giv-
ing the container control over the data access logic,
allows for some automatic optimizations usually not
implemented in BMP code. For example, the con-
tainer can monitor which fields of an entity bean are
modified during a transaction and make sure that only
these fields are written to the database at commit time.
This minimizes database access calls and avoids doing
unnecessary work. Another optimization that is usu-
ally provided is related to the loading of entity beans.
With BMP loading an entity bean usually requires 2
database calls:

1. ejbFind to find the respective database record and
retrieve its primary key.

2. ejbLoad to read the entity bean’s data from the
database.

With CMP these steps are usually transparently
combined into a single database access retrieving both
the primary key and the data. Similar optimization
can also be applied when loading a collection of N
entity beans. With BMP this would require N+1
database calls - 1 ejbFind and N ejbLoads. With CMP
the container can be configured to automatically com-
bine the N+1 calls into a single call. We should note

here that not all containers currently available imple-
ment all of the above optimizations. However, the
major ones do, and it should be expected that as con-
tainers mature, more and more optimizations will be
automatically provided by CMP.

Coming back to our results with ECperf (Figure 5),
we see that the extra database calls when using BMP
lead not only to higher response times but also to the
system getting saturated much more quickly. As a re-
sult, throughput starts to drop as we go beyond an
injection rate of 40. So, generally speaking, if con-
figured properly CMP usually performs much better
than BMP. Therefore, our recommendation is to use
CMP instead of BMP whenever it is possible. How-
ever, there are situations where one may not be able
to use CMP. For example, in cases where the container
does not directly support the persistence mechanism
used or it supports it but some complex mappings need
to be defined that are not supported. In such cases
BMP holds an advantage over CMP, because it not
only allows an arbitrary persistence mechanism to be
used, but provides complete control on how beans are
mapped to storage structures. We will now briefly dis-
cuss some common techniques that could be applied to
improve BMP performance [6]. First of all, the N+1
database calls problem described earlier, can be elim-
inated by using the so-called Fat Key Pattern. For
lack of space, we are not going to present this pat-
tern here and refer interested readers to [7]. Another
thing that could be done is to make sure BMP code
only uses parameterized prepared SQL statements [8].
This reduces the load on the DBMS by allowing it
to reuse cached execution plans for statements that
were already prepared. Most application servers pro-
vide a PreparedStatement Cache as part of the connec-
tion pool manager. The application server keeps a list
of prepared statements and when an application calls
prepareStatement on a connection, the server checks
if the statement has already been prepared. If that
is the case, the PreparedStatement object is found in
the cache and is directly returned to the application.
This reduces the number of calls to the JDBC Driver
and improves response times. Most containers allow
the size of the prepared statement cache to be tuned
for optimal performance.

6 Elimination of Persistence Bottle-
necks

In this section we present some general guidelines
on how persistence bottlenecks of J2EE applications
could be approached and eliminated. We stick to our
running example application - the ECperf benchmark
and use it as a basis to illustrate the points we make.

6.1 The ECperf Persistence Bottleneck

Apart from running ECperf with Oracle we also con-
ducted some experiments with Informix. However,
surprisingly enough, the benchmark was exhibiting
quite a different behavior when run with Informix.
More specifically, the persistence layer was turning
into a system bottleneck and preventing the bench-
mark to stress the application server and measure its
performance. We now take a closer look at the sources
of this problem and then proceed to offer a concrete
solution to eliminate the persistence bottleneck.

Figure 6 depicts our new deployment environment
with Informix as a database server.

LAN

RedHat Linux 7.1, 192 MB Main Memory

Client PC

SUT - System Under Test

ECperf EJBs deployed on Web Logic Server 6.1
Solaris 7, SUN Ultra Sparc Il (Ultra 60)

2 x 360 MHz CPUs, 2 GB RAM

RDBMS: Informix Universal Server 9.20
Hosting the ECperf Database

Solaris 7, SUN Ultra Sparc Il (Ultra 60)

2 x 360 MHz CPUs, 2 GB RAM

ECperf Supplier Emulator

Emulator deployed on Web Logic Server 6.1
Solaris 7, SUN Ultra Sparc Il

1 x 360 MHz CPU, 1 GB RAM

Supplier Emulator
Figure 6: Deployment Environment with Informix

When we ran ECperf out-of-the-box in this environ-
ment we monitored the database and observed very
high data contention levels. We should note here
that unlike Oracle, Informix employs a pessimistic
scheduler which uses a locking-based concurrency con-
trol technique based on the popular 2PL (2-Phase-
Locking) Protocol [16]. Under 2PL data items are
locked before being accessed. Concurrent transactions
trying to access locked data items in conflicting mode
are either aborted or blocked waiting for the locks to
be released. When running ECperf we noticed that
large amounts of data access operations were result-
ing in lock conflicts which were blocking the respec-
tive transactions. A high proportion of the latter were
eventually being aborted because of either timing out
or causing a deadlock. As a result very poor through-
put levels were achievable and raising the injection rate
beyond 2 caused a sudden drop in throughput - a phe-
nomenon known as Data Thrashing [15].

The first thing that comes to mind when trying
to reduce data contention is to decrease the locking
granularity [16]. After setting up Informix to use row-
level locks (instead of page-level locks) we observed
a significant increase in throughput. To further opti-

mize the data layer we tried decreasing the isolation
level [9]. We configured all entity beans to use the
SQL TRANSACTION_COMMITTED_READ isolation level al-
though this could compromise data consistency and in-
tegrity. However, the ECperf specification [14] doesn’t
place a restriction with respect to this.

While these obvious optimizations could help to al-
leviate the identified bottleneck, they could not elimi-
nate it and make ECperf behave as originally intended.

6.2 Getting to the Core of the Problem

After conducting a number of experiments and care-
fully monitoring the database we noticed the follow-
ing: the crucial transaction scheduleWorkOrder of
the WorkOrderSes bean was taking relatively long to
complete, while holding exclusive locks on some highly
demanded database tables. The transaction first cre-
ates a new work order entity, then identifies the com-
ponents that make up the requested assembly in the
Bill of Materials and assigns the required parts from
inventory. The transaction can also cause calls into
the Supplier Domain in case some parts get depleted
and new amounts need to be ordered. Figure 7 depicts
the execution step-by-step.

ScheduleWorkOrder

Create Work Order

‘ECperf DB‘ ‘Supo. Domain‘ ‘Supp. Emulator‘

Get Bill of Materials

Get parts from Inventory

If parts depleted, contact Supplier

P
i Create PO Send PO

Confirm Receival
e

Figure 7: The scheduleWorkOrder Transaction
The scheduleWorkOrder transaction proceeds as
follows:
1. Create a work order
- insert a row in the M_WORKORDER table
2. Start processing the work order (stage 1 process-
ing)
- get the Bill of Materials needed
- assign required parts from inventory
3. If parts need to be ordered send a Purchase Order

- insert rows in the S_PURCHASE_ORDER and
S_PURCHASE_ORDERLINE tables

- send the purchase order to the supplier emu-
lator - order is sent in XML format through
HTTP

We identified two problems with this design of
the scheduleWorkOrder transaction. First, send-
ing the purchase order (the last step) delays the
transaction while holding locks on the previously in-
serted table and index entries. We monitored the
database lock tables and observed that indeed most
of the lock conflicts were occurring when trying
to access the M_WORKORDER, S_PURCHASE_ORDER and
S_PURCHASE_ORDERLINE tables or their indices. This
supported our initial suspicion that it was the access
to these tables that was causing the bottleneck.

The second problem is that the sending step is not
implemented to be undoable. In other words once a
purchase order is sent to the supplier emulator, its
processing begins and this processing is not cancelled
even if the scheduleWorkOrder transaction that sent
the order is eventually aborted. Indeed, if this oc-
curs, all actions of the scheduleWorkOrder transaction
are rolled back except for the sending step. As a re-
sult, the respective purchase order is removed from the
S_PURCHASE_ORDER table, but the emulator is not no-
tified that the order has been cancelled and continues
processing it. Later when the order is delivered no in-
formation about it will be found in the database and
an exception will triggered. So while the first problem
has to do with data contention and performance, the
second one concerns the scheduleWorkOrder transac-
tion’s atomicity and semantics.

In the following we are going to suggest some mi-
nor modifications of the benchmark that aim at cir-
cumventing the identified bottleneck. Our approach is
to break up the scheduleWorkOrder transaction into
smaller separate transactions. This is known as Trans-
action Chopping in the literature [16]. The main goal
is to commit update operations as early as possible,
so that respective locks are released. We strive to iso-
late time-consuming operations in separate transac-
tions that do not require exclusive locks. At the same
time we ensure that transaction semantics are correct.

We have identified and proposed two different so-
lutions to the identified problems. In the first one
we keep adhering to the EJB 1.1 specification, while
in the second we utilize some services defined in the
EJB 2.0 specification. In this paper we will only con-
sider the second solution since it has some significant
advantages over the first one. Readers interested in
the EJB 1.1 solution are referred to [5].

6.3 Utilizing Messaging and Asynchronous
Processing

The problem with the scheduleWorkOrder transaction
was that the sending of the purchase order may delay
the transaction while holding highly demanded locks.
On the one hand, we want to move this step into a sep-

arate transaction to make scheduleWorkOrder finish
faster. On the other hand, we need to guarantee that
the sending operation is executed atomically with the
rest of the scheduleWorkOrder transaction. In other
words, if the transaction commits, the purchase order
should be sent, if the transaction aborts the purchase
order should be destroyed and never sent. In fact, as
already discussed above, this atomicity is not guar-
anteed by the given design of ECperf. However, we
believe that this is what the correct behavior of the
scheduleWorkOrder transaction should be. We would
like to note that in the given situation we do not have
the requirement that the sending of the purchase order
must be executed to its end before scheduleWorkOrder
commits. We only need to make sure that, provided
that it commits, the sending operation is eventually
executed. This situation lends itself naturally to Asyn-
chronous Processing and Messaging.

Messaging is an alternative to traditional Request-
Reply Processing. Request-Reply is usually based on
Remote Method Invocation or Remote Procedure Call
(RPC) mechanisms. Under these mechanisms, a client
sends a request (usually by calling a method on a re-
mote object) and is then blocked, waiting until the
request is processed to its end. This is exactly our sit-
uation above with the sending of the purchase order.
This blocking element prevents the client from per-
forming any processing in parallel while waiting for
the server - a problem that has long been a thorn for
software developers and whose solution has led to the
emergence of Messaging and Message-Oriented Mid-
dleware (MOM) as an alternative to Request-Reply.
In fact, it is a solution defined long time ago with the
advent of the so-called Queued Transaction Processing
Models [3].

In a nutshell, the idea behind messaging is that a
middleman is introduced, sitting between the client
and the server [10]. The middleman receives mes-
sages from one or more message producers and broad-
casts those messages to possibly multiple message con-
sumers. This allows a producer to send a message
and then continue processing while the message is be-
ing delivered and processed. The message producer
can optionally be later notified when the message is
completely processed. A special type of messaging is
the so-called Point-To-Point Messaging in which each
message is delivered to a single consumer. Messages
are sent to a centralized message queue where they are
processed usually on a first-in-first-out (FIFO) basis.
Multiple consumers can grab messages off the queue,
but any given message is consumed exactly once.

The Java Messaging Service (JMS) [13] is a stan-
dard Java API for accessing MOM infrastructures and
the EJB 2.0 specification [12] integrates JMS with EJB
by introducing the so-called Message-Driven Beans.
The latter are components that act as message con-
sumers in that they receive and process messages de-

livered by the MOM infrastructure. For example in
a point-to-point messaging scenario message-driven
beans can be used to process messages arriving on a
message queue.

6.4 Eliminating the Persistence Bottleneck

We wanted to allow the transaction to commit before
the purchase order is sent, but with the guarantee that
it will eventually be sent out. By utilizing messaging
we can simply send a message to the supplier domain
notifying that a new order has been created and must
be sent. After this we can commit our transaction and
release all locks. A dedicated message-driven bean can
be deployed in the Supplier Domain to handle incom-
ing messages by sending orders out to the emulator.
We only need to make sure that the operation that
sends the notification message to the supplier domain
is transactional and is executed as part of the sched-
uleWorkOrder transaction. This would ensure that the
sending of the message is executed atomically with the
rest of the transaction. Furthermore, modern messag-
ing infrastructures provide a Guaranteed Message De-
livery option which ensures that once a transaction is
committed all messages it has sent will be delivered
even if respective consumers were down at the time of
sending. Taking advantage of this property, we can
claim that if the scheduleWorkOrder transaction cre-
ates a purchase order and then successfully commits,
we have the guarantee that the supplier domain will
eventually be notified and the purchase order will be
sent out to the emulator. The latter enables us to
safely move our sending step into a separate transac-
tion and execute it asynchronously. Figure 8 illustrates
this solution.

JMS Server EJB Container

Message-Driven
: Bean
WorkOrderSes
EJB

Figure 8: Sending purchase orders asynchronously.

Web Container

Supplier
Emulator
Servlet

JMS Queue

The new design of the scheduleWorkOrder transac-
tion is depicted in Figure 9.

Now lets examine how the new design of the
scheduleWorkOrder transaction affected the behavior
of the benchmark. Figure 10 compares throughput
(BBops/min) achieved with Informix when running
ECperf out-of-the-box against throughput achieved af-
ter implementing our messaging-based redesign. All
data is relative to the throughput (Bbops/min) that
we obtained when running ECperf out-of-the-box with
injection rate of 1. As we can see throughput increases
linearly up to injection rate of 6 and then gradually
starts to drop as we go beyond injection rate of 10.

ScheduIeWorkOrder‘
i Create Work Order } ! !

lECperf DB‘ lSupp. Domain‘ IPO Queue

Get Bill of Materials

|
|
|
|
Get parts from Inventory }
|
|

If parts depleted, contact Supplier

Send M ge |

Create PO

|
!
Il
\
i

|
[PO Queue| [ECperfDB| [Supp. Emulator]
|

Get next Message

|
lMessage-driven Bean‘
|

]
|
()
Read PO }

Send PO over HTTP

T
Confirm Receival
|

I
I
I
1

[N
I
T
I
I
I

Figure 9: New design of the scheduleWorkOrder trans-
action.

‘ B Synchronous O Asynchronous ‘

Relative Throughput

o NN nn .l
1 2 3 4 5 6 7 8 9 10
Transaction Injection Rate

Figure 10: Synchronous vs. Asynchronous variant of
ECperf with Informix

This is because at this point the application server is
saturated, i.e. the CPU utilization of the WebLogic
Server process approaches 100%. So, in this case the
application server becomes the bottleneck. However,
this is exactly the intended behavior of the benchmark,
since its aim is to stress the application server and
measure the maximum throughput that it can achieve.
We should note here that all tests were run using a sin-
gle instance of WebLogic Server. The latter was not
able to utilize both CPUs of the machine and we ex-
pect much better results if a multi-instance WebLogic
Cluster is run on the same hardware. However, what is
more important is that the new design of the schedule-
WorkOrder transaction eliminated the persistence bot-
tleneck and made the benchmark behave as intended.

Not only does the asynchronous design bring a big
performance advantage, but it also eliminates the sec-
ond problem that we mentioned regarding the atomic-
ity of the scheduleWorkOrder transaction. There is no

B Synchronous O Asynchronous

Relative Throughput

1 2 3 4 5 6 7 8 9 10
Transaction Injection Rate

Figure 11: Synchronous vs. Asynchronous variant of
ECperf with Oracle 9i

way for a purchase order to be cancelled after it has
been sent to the supplier emulator. A further bene-
fit that we get is related to the application’s reliabil-
ity. Under the original design if the supplier emulator
is down at the time a new purchase order is being
created, the scheduleWorkOrder transaction will be
aborted after timing out and all its work will be lost.
With the new design the notification message will be
sent successfully and although the sending of the or-
der will be delayed until the emulator comes up, the
scheduleWorkOrder transaction will be able to commit
successfully.

ECperf has been planned to be a DBMS-
independent benchmark and therefore some changes
are required to make this a reality. We submitted our
optimization proposals to the ECperf Expert Group at
Sun, where they have been discussed and addressed.
Although it is too late to make modifications to the 1.0
version of the benchmark, the ECperf Expert Group
vowed to eliminate the problems that we raised with
the next version of the benchmark.

One might wonder why the bottleneck was not no-
ticed earlier. The answer is that everyone had only
been testing with Oracle where an optimistic multi-
version concurrency control protocol is used. The im-
portant advantage of this protocol is that it never
blocks read operations even when concurrent updates
are taking place. For this particular workload Ora-
cle’s protocol obviously proved to perform much bet-
ter. However, we will now show that even with an
Oracle DBMS our redesign brings some significant per-
formance and reliability benefits.

Figure 11 compares the synchronous and asyn-
chronous variants of ECperf when run with Oracle. We
can see that the performance gain of the asynchronous
variant is considerably lower in this case, but it in-
creases steadily as we raise the injection rate. The av-
erage CPU utilizations of the database server and the

-e- Synchronous -= Asynchronous \

100
c
IS
N
5 60
z /
O 40
o
Q
8 20 4
(@]

0 T T T T T T T T T

1 2 3 4 5 6 7 8 9 10
Transaction Injection Rate
-o- Synchronous -® Asynchronous
- 100
i)
E 80
5
5 60+
S
o 40
D
3
=2 20
=
O T T T T T T T T T

1 2 3 4 5 6 7 8 9 10

Transaction Injection Rate

Figure 12: CPU Utilization of the Database Server
and the Application Server

application server during the experiments are shown
on Figure 12. These are very rough approximations,
but should serve to give us a picture of the behavior
of the benchmark under load. We can see that under
the synchronous variant of ECperf the CPU utiliza-
tion of the application server approaches 100% at in-
jection rate of 6. This explains why there is hardly any
increase in throughput at higher injection rates. Un-
der the asynchronous variant, the CPU utilization of
the application server is constantly lower because pur-
chase orders are not sent immediately. As as result,
the application server is saturated much later, namely
at injection rate of 10 instead of 6. This enables us
to achieve higher throughput levels at injection rates
beyond 6 and explains why the database server’s CPU
utilization is higher at these rates. We can see that
as far as the database server is concerned, there is
almost no difference in CPU utilization. This is be-
cause whether we send purchase orders synchronously
or asynchronously does not affect the operation of the
Oracle database very significantly.

However, we must note that the scenario under
which we carried out our experiments is not realistic in
the sense that the supplier emulator is contacted over a
Local Area Network (LAN). In real life contacting the

‘ - Synchronous -=- Asynchronous ‘

3
o .‘I\.—.\.
£
3 \\
R
E_C
g S
=3
SF 1
3
(O]
o

0

0 2 4 6 8

Average Emulator Delay (sec)

Figure 13: Manufacturing Throughput as we increase
the supplier emulator’s delay (network delay)

supplier emulator might take much longer if we have to
go over a Wide Area Network (WAN). This would re-
sult in much higher network delays and would further
degrade the performance of the synchronous ECperf
design. In order to illustrate this, we programmed the
emulator to impose an artificial delay before confirm-
ing receipt of the purchase order. We then carried out
some experiments under the same transaction injec-
tion rate, but with different length of the simulated
network delay. Figure 13 shows the impact of the em-
ulator delays on the throughput of the manufacturing
application. Obviously, there was hardly any impact
on the asynchronous variant of ECperf because the
delays were not blocking the transactions in the man-
ufacturing domain. However, this was not the case for
the synchronous variant of ECperf where the delays
were making the scheduleWorkOrder transaction fin-
ish slower and in this way were directly affecting the
throughput of the manufacturing application. We can
see how quickly throughput drops as we increase the
length of the network delay.

7 Summary and Conclusions

In this paper we examined the major persistence
techniques provided in the J2EE platform and eval-
uated their performance in the context of a realis-
tic application. We showed how easily the data ac-
cess layer of J2EE applications can become a sys-
tem bottleneck and provided some guidelines on how
such bottlenecks could be approached and eliminated.
While doing this we presented a number of meth-
ods for improving the way persistent data is man-
aged in J2EE applications. Besides techniques well-
known in the database community (for example ex-
ploiting locking granularity and isolation levels) we
discussed how caching services and asynchronous pro-
cessing could be exploited in order to reduce the load
on the database and improve system performance and

reliability. We studied the performance difference be-
tween Container-Managed and Bean-Managed Persis-
tence and showed that in general CMP utilizes the
container’s caching services much better than BMP. In
addition, we demonstrated through a practical exam-
ple the performance gains and reliability benefits that
asynchronous message-based processing could provide
over traditional request-reply processing.

Acknowledgments

We gratefully acknowledge the many fruitful discus-
sions with Shanti Subramanyam and Akara Suchari-
takul from Sun Microsystems Inc, Dan Fishman and
Steve Realmuto from BEA Systems and Chris Beer
from SPEC.

References

[1] Bea Systems, Inc. WebLogic Server Documentation. Tech-
nical report. http://e-docs.bea.com/wls/.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Publishing Company, 1987.

[3] P. Bernstein and E. Newcomer. Principles of Transaction
Processing. Morgan Kaufmann Publishers, Inc., 1997.

[4] P. Brebner and S. Ran. Entity Bean A, B, C’s: Enter-
prise Java Beans Commit Options and Caching. In Proc. of
IFIP/ACM International Conference on Distributed Sys-
tems Platforms - Middleware, 2001.

[5] S. Kounev. Eliminating ECperf Persistence Bottlenecks
when using RDBMS with Pessimistic Concurrency Con-
trol. Technical Report http://www.dvsl.informatik.
tu-darmstadt.de/ skounev, Technical University of Darm-
stadt, Germany, September 2001.

[6] S. Kounev and A. Buchmann. Performance Issues in E-
Business Systems. In Proc. of the International Con-
ference on Advances in Infrastructure for e-Business, e-
Education, e-Science, and e-Medicine on the Internet -
SSGRR-2002w, 2002.

[7] F. Marinescu. Enterprise Java Beans Design Patterns.
John-Wiley & Sons, Inc., 2002.

[8] B. Newport. Why prepared statements are important and
how to use them properly. TheServerSide.com J2EE Com-
munity - http: //www. theserverside. com/, 2001.

9] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 2nd edition, 2000.

[10] Ed Roman, S. Ambler, and T. Jewell. Mastering Enter-
prise Java Beans II and the Java 2 Platform, Enterprise
Edition. John-Wiley & Sons, Inc., 2002.

[11] A. Sucharitakul. Seven Rules for Optimizing Entity Beans.
Java Developer Connection - http://www. java. com/,
2001.

[12] Sun Microsystems, Inc. Enterprise JavaBeans 1.1 and 2.0.
Specifications. http://java.sun.com/products/ejb/.

[13] Sun Microsystems, Inc. Java Message Service API 1.0.2.
Specification. http://java.sun.com/products/jms/.

[14] Sun Microsystems, Inc. The ECperf 1.0 Benchmark. Spec-
ification, June 2001. http://java.sun.com/j2ee/ecperf/.

[15] Y. Tay, N. Goodman, and R. Suri. Locking Performance
in Centralized Databases. ACM Transactions on Database
Systems, 10/4, 1985.

[16] G. Weikum and G. Vossen. Transactional Information Sys-
tems - Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann Publish-
ers, 2002.

