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Summary

Based on the success of mobile telephony in the recent past, many observers expect mobility in con-
junction with mobile devices to open up a wide field for novel applications. Many experts predict the
arrival of new services, such as mobile commerce, location-based services, multimedia messaging,
and mobile gaming. They claim that this new class of mobile applications will constitute a main
driving-force for technological advancements at least for the next decade. Also, in the third gener-
ation of mobile telephony, we expect to observe the logical next step: the convergence of mobile
appliances into a new generation of smart devices, such as smartphones. Today, we can distinguish
three basic categories of mobile devices: (i) specialized devices, such as special-purpose systems
or mobile phones, (ii) devices that are more flexible, such as personal digital assistants (PDAs),
and (iii) real general-purpose devices, such as laptop computers. The next generation of devices
will be unifying distinct features of the categories named above. Such devices will become flexible,
lightweight, and mobile at the same time. This meets a basic requirement found in the vision of
ubiquitous and pervasive computing. The latter vision places its main focus on smart mobile devices
as the enabling technology for interaction of mobile users with the surrounding infrastructure.

Another trend expected is based on the observation that more and more artifacts in the infrastruc-
ture will be equipped with processors and—more importantly—networking interfaces. Therefore,
they are able to generate as well as receive data. The original thesis of ubiquitous computing ex-
pects a mobile user to be embedded into surroundings filled with communicating and interacting
artefacts, all serving the spontaneous needs of the user. Moreover, we are convinced that the interac-
tion between users and the surroundings in highly mobile and dynamic settings has to be mediated
by a common middleware platform, together with personalized devices and specialized services,
facilitating the needs of mobile users.

This basic system model of nomadic users and smart infrastructures poses a number of challenges
for such middleware support. First of all, mobility by itself requires different paradigms for inter-
action than those found in classical distributed systems. Many paradigms, well-established in static
distributed systems are likely to fail when applied to these new settings. One prominent example
among many is the request/reply paradigm, which is too static and tight-coupled to be successful in
dynamic mobile settings. Here, different paradigms, like loose-coupling and data-centric computing,
are more likely to succeed.

The next key challenge for middleware is to support mobile applications to react “smartly” to
changes of their execution environment. Users of such applications obviously expect their electronic
helpers to adapt themselves to the current situation they are used in. A well-known example is to
turn off the ringer tones of a mobile phone when the user is in a meeting situation. Such adaptation is
part of what usually is called context- or situation-aware computing. The challenge for middleware
support lies here in providing means to retrieve context information from the environment on a
syntactic and semantic level. Here we face issues of heterogeneity, together with efficient filtering
of large volumes of information available.
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Another rationale—as well as challenge—for middleware support in dynamic and mobile scenar-
ios is the need to decouple producers and consumers of data in the system in time and space. For
the systems considered in this thesis, often it is not feasible for producers and consumers to “know”
each other, especially due to the number of participants or resource constraints. Effective means for
anonymous interaction are therefore essential. Moreover, for mobile clients the receiver cannot be
assumed to be online at the same time the sender produces the data. Again, a middleware solution
can provide facilities for buffering and access to past information.

The scale of pervasive systems we envision is also a challenge. On the one hand, systems will
grow in physical size, like spanning a whole city. On the other hand, systems also can be rather
small in size, but dense in the number of processors and applications contained within. Thus, the
key challenge is to provide a communication infrastructure in which data and information is still
manageable even for small devices while communication remains efficient and scalable.

Altogether, we are convinced that this constitutes a strong demand for a mediator between pro-
ducers and consumers of data, i.e., a middleware solution.

This thesis presents solutions to the challenges listed above using mechanisms that are based on a
distributed publish/subscribe notification service. The main contributions are:

Requirement analysis. As a basis for assessing the novelty of pervasive computing environments in
comparison to conventional distributed systems, we provide a thourough analysis of the problem do-
main. The main result is a taxonomy and a number of requirements on which we built and assess our
own solutions. Among the requirements, the need for proper support for mobility and environment-
awareness is of outstanding importance. Moreover, we compare several different communication
paradigms for distributed systems to identify one which will serve best as the basis for extensions
needed in pervasive systems. We identify the well-established publish/subscribe paradigm as a suit-
able basis for such extensions. It already addresses a number of requirements, therefore forming a
sound foundation, but falls short to meet others as detailed below.

Mobility support. As a first step towards a content-based publish/subscribe notification infrastructure
for pervasive systems, we introduce an important mechanism for transparency of mobility. This is
a common requirement for clients of the infrastructure that roam freely. Certain aspects of the han-
dling of this issue are located in the infrastructure and are opaque to the client. This can be beneficial
for a client either because it is not aware of its own mobility, e.g., together with legacy applications,
or deliberately wants to delegate some aspects into the infrastructure. Therefore, we devised a re-
location algorithm that facilitates location transparency, offering the possibility to transfer existent
event-based applications seamlessly into mobile environments. The algorithm extends the exist-
ing content-based routing infrastructure to support non-interrupted, sender-FIFO ordered delivery of
notifications in the mobile case, without having a client even to be aware of this extension.

Location-dependent subscriptions and notifications. The next logical step is to provide means for
mobility-aware applications to express their interest in events and data related to their current en-
vironment. To do so, we choose location as a well-understood and rich indexing scheme on such
information. First, most information can be related to some location and next, we need strong
selection criteria to distinguish relevant from irrelevant information. However, to make location us-
able together with a content-based publish/subscribe notification service, we introduced a special
location model. It serves as the foundation for location-dependent subscriptions and notifications,
respectively. The challenge from the point of view of the publish/subscribe infrastructure is twofold:
first, hiding the details and burdens of adaptation of location-dependent subscriptions to the current
position of a client. Second, due to the uncertainty of the client position and movement, to keep
delivery of information timely and accurate and to keep the network load for the client bearable. We
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introduce an adaptive algorithmic solution that addresses both challenges. It offers delivery guar-
antees, normally only found together with network flooding, but contrary to flooding, leverages the
information about the client subscription’s relevancy in space to restrict the degree to which uncer-
tainty of location related message delivery is necessary. Thereby, an effective means to express and
implement location-awareness is introduced.

Decoupling in space and time. To a large degree the previous solutions, together with the basic pub-
lish/subscribe paradigm, already decouple sender and receipient of data in space and time. However,
an inherent danger of asynchronous, anonymous communication is the unpredictability of when
data is generated. This can be harmful in cases where a mobile client needs a certain number of
notifications to reach a consistent state, from which its execution can commence. Here, we propose
techniques to access past information. We devise mechanisms in the infrastructure, enabling a client
to minimize the time-span it has to listen for new notifications. This can be done by virtually relocat-
ing the arrival time of a client at a new location into the past. Hence, we establish distributed buffers
in the infrastructure together with a set of search and consolidation strategies, tailored to minimize
the bootstrapping latency experienced by a client. Together with the algorithms introduced above, a
considerable decoupling of producers and consumers in space and time is achieved.

A framework for the development of context-aware applications. We identify context to be an impor-
tant input for applications in pervasive computing systems. Usually, such context data is the result
of changes in the volatile external computing environment the client operates in. Adaption therefore
is reactive in nature. We analyze the impact on the development of context-sensitive applications
and based on this, we introduce a framework for the structured development of such applications.
Within this framework we show how, at designtime, semantically high-level context information can
be decomposed stepwise to match the semantics and syntax of data found in a system at runtime.
At runtime we leverage well-defined event operators, such as event composition and aggregation to
generate the wanted input on the level of applications. Some aspects of the framework resemble
mechanisms also found in the rather recent paradigm of model driven development (MDD).

Summing up, this thesis provides solutions to the question of how the successfully deployed pub-
lish/subscribe paradigm can be extended to serve as a middleware platform for pervasive computing
systems. It does so by proposing concrete architectures, algorithms, and frameworks, which addi-
tionally have been implemented prototypically.
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Zusammenfassung

In den letzten Jahren konnte die Welt den beeindruckenden Erfolg der mobilen Telefonie miterle-
ben. Das Mobiltelefon hat sich innerhalb weniger Jahre vom Exoten zum Massenprodukt gewandelt.
Parallel dazu haben sich weitere mobile Geräte enorm fortentwickelt, wie Persönliche Digitale As-
sistenten (PDAs) und Notebook-Computer. Konsequenterweise beobachten wir heute den logischen
nächsten Schritt. Mobiltelefone und PDAs konvergieren technologisch zu einer neuer Geräteklasse,
die so genannten Smartphones. Sie zeichnen sich dadurch aus, dass sie ausreichende Rechenlei-
stung mit der Möglichkeit der mobilen Kommunikation vereinen. Außerdem wird sich in Zukunft
die Funktionalität dieser Geräte erweitern, insbesondere durch das Hinzufügen externer Sensoren,
z.B. für das Globale Positioning System (GPS). Denkbar sind darüber hinaus weitere Sensoren zur
Feststellung bestimmter Parameter der aktuellen Umgebung.

Daher wird erwartet, dass mobile Geräte und ihre Applikationen die größten technologischen
Trends des nächsten Jahrzehnts sein werden, kommerziell ebenso wie in der Forschung. Manche
gehen noch einen Schritt weiter und prognostizieren, dass komplementär zu den mobilen Geräten
ihre Umgebung ebenfalls smart werden wird. Solche Umgebungs-Intelligenz äußert sich darin, dass
die Infrastruktur selber angereichert ist mit allen erdenklichen Artefakten, welche über hinreichen-
de Rechenleistung und (vor allem) eine Netzwerk-Schnittstelle zur Kommunikation verfügen. Diese
Form der hochgradig vernetzen mobilen Systeme wurde erstmals von Mark Weiser postuliert und
von diesem mit dem Begriff Ubiquitous Computing (Ubiquitäres Rechnen) [Wei93; Wei91] belegt.
Nach seiner klassischen Definition findet ein großer Teil der eigentlichen Applikationen in der In-
frastruktur statt. Im Extrem sogar ausschließlich dort. Das wird dann u.a. als „Ambient Computing”
bezeichnet. Ein anderer Name für eine ähnliche Sicht auf mobile Systeme ist „Pervasive Compu-
ting,” eingeführt von IBM [IBM01b]. Der Fokus dieses Begriffs ist leicht verschoben und ruht auf
den notwendigen Technologien, die es dem Benutzer eines Systems ermöglichen, mit seiner (elek-
tronischen) Umgebung mit Hilfe eines personalisierten Gerätes zu interagieren. Die grundlegende
Annahme ist, dass ein Benutzer einem persönlichen Helfer grundsätzlich mehr vertraut als wechseln-
den Systemen wie sie in unterschiedlichsten Dienstnutzungsszenarien vorgefunden werden. Solche
Dienstnutzungsszenarien reichen von einfachen Druckdiensten an Flughäfen oder Bahnhöfen bis zu
lokationsbewussten Diensten, die abhängig von der aktuellen Position ihre Dienstleistung entspre-
chend anpassen („Location-based Services”). Die zentrale Herausforderung ist die Notwendigkeit
der Anpassung an die physikalische ebenso wie die Ausführungsumgebung, in dem sich ein persön-
licher elektronischer Helfer aktuell befindet. Eine Notwendigkeit zur flexiblen Anpassungsfähigkeit
wird oftmals auch als Kontextbewusstsein bezeichnet. Benutzer mobiler Geräte, die mit der lokalen
Umgebung interagieren, erwarten zu recht ein gewisses Maß an „smartem” Verhalten der mobilen
Geräte. In unterschiedlichen Situationen sollen bestimmte Verhaltensweisen automatisch angepasst
werden. Zum Beispiel sollte während einer Sitzung ein mobiles Telefon auf stummen Alarm geschal-
tet oder sogar ganz auf die Mailbox umgeleitet werden. Um ein solches Verhalten zu realisieren ist
daher ein Kontextbewusstsein notwendig. Kontextbewusstsein kann nur dann existieren, wenn das
mobile Gerät in der Lage ist, mit seiner (wechselnden) Umgebung zu kommunizieren und bestimmte
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notwendige Informationen über den aktuellen Kontext einzuholen.

Aus der Vision des Ubiquitären Rechnens und der Vision der Welt, die durchdrungen ist von
unzähligen Sensoren, Aktuatoren und anderen „intelligenten” Artefakten, mit denen personalisierte
mobile Geräte interagieren müssen, sehen wir aus infrastruktureller Sicht eine Reihe fundamentaler
Herausforderungen:

Mobile Systeme. Die erste und offensichlichste Herausforderung ist der hohe Grad an Mobilität
in ubiquitären Dienstnutzungsszenarien. Durch die Mobilität der Benutzer sind auch deren digita-
len Helfer mobil, was einen großen Einfluss auf den generellen Aufbau mobiler Gesamtsysteme
hat. Als ein prominentes Beispiel mag hier das beliebte Request/Reply Paradigma dienen. In diesem
Paradigma holt sich ein Klient über eine definierte Punkt-zu-Punkt Verbindung von einem Dienstan-
bieter Daten. In ubiquitären Umgebungen ist eine solche Form der Interaktion nur noch beschränkt
verwendbar:

• Flüchtige Bindungen. In einem Request/Reply Szenario ist es für den mobilen Klienten not-
wendig, die Adresse und den Port des Dienstes zu kennen von dem er Daten abrufen kann. In
den hier betrachteten Szenarien sind genau dies Informationen, die jeweils von Umgebung zu
Umgebung wechseln können. Da keine globale administrative Instanz angenommen werden
kann, ist hier ein hohes Maß an Heterogenität wahrscheinlich. Abhilfe können dedizierte Pro-
tokolle und Verfahren schaffen, die solche Meta-Informationen „entdecken.” Als Beispiel sei
hier Jini [Sun99a] von Sun Microsystems genannt. Der nachgewiesene Nachteil dieser Verfah-
ren ist der hohe Resourcenverbrauch auf mobilen Geräten, welche den Nutzen im ubiquitären
Fall zweifelhaft erscheinen läßt. Daher erscheint ein leichtgewichtiger und auf die eigentlich
benötigten Daten ausgerichteter Ansatz wesentlich besser geeignet für die genannten Anwen-
dungsfälle. Dieser Ansatz wird auch im Rahmen dieser Dissertation verfolgt.

• Enge Kopplung. Als weiteres Phänomen der hohen Mobilität und Spontanität der Interaktion
ist, dass auf der Verbindungsebene Annahmen über das „normale” Verhalten der Kommunik-
tationspartner in einen Request/Reply Szenario fehlschlagen. Dort wird normalerweise ange-
nommen, dass der Verlust der Verbindung zwischen Klient und Dienst automatisch mit einem
Fehlerzustand gleichzusetzen ist. Eine solche enge Kopplung ist jedoch in einem mobilen Sy-
stem i.d.R. nicht realisierbar. Mobile Klienten, die ihre Energie aus einem Akku beziehen,
werden versuchen möglichst Energie zu sparen und sich regulär ausschalten. Oder sie geraten
in ein „Funkloch” und sind für eine Weile nicht erreichbar. In einem eng gekoppelten System
wird dies unweigerlich zu einem Fehler führen. Daher ist es notwendig, die grundlegenden
Eigenschaften der Verbindungsebene zu berücksichtigen und integral mit in das Model der
Kommunikation zu integrieren. In der vorliegenden Arbeit wird dies im Rahmen des Entwurfs
eines verteilten Notifikationsdienstes unter dem Aspekt lose gekoppelte Systeme berücksich-
tigt.

Ein weiterer zu berücksichtigender Aspekt ist, dass ein Ressourcen-limitiertes Gerät sehr leicht
vom eigentlichen Management seiner eigenen Mobilität überfordert werden kann. Allein die Inte-
gration in eine neue Umgebung kann schon zu komplex sein, wie z.B. Jini negativ beweist. Weiterhin
ist zu beachten, dass in hochgradig vernetzten System mit einer großen Anzahl von Artefakten auch
die Menge der Daten, die sich zu einem gegebenen Zeitpunkt im System befinden, stark ansteigt.
Ein „kleines” Gerät kann folglich unbrauchbar werden, wenn es selbst für die notwendige Filterung
sorgen muss. Darüber hinaus muss ein mobiles Gerät möglicherweise einige oder sogar alle Aspekte
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von Mobilität in die Infrastruktur delegieren und so „mobilitätstransparent” agieren. In dieser Situa-
tion ist zu überlegen, ob eine „Mobilitätsschicht” zur Vermittlung zwischen mobilem Gerät und der
eigentlichen Infrastruktur vorteilhaft ist.

Adaptives Verhalten. Eine wichtige Klasse von Anwendungen in ubiquitären Szenarien ist die-
jenige der kontextbewussten und kontextadaptiven Anwendungen. Im Allgemeinen zeichnen sich
diese Anwendungen dadurch aus, dass sie sich der jeweiligen Umgebung anpassen und auf Ände-
rungen ihrer Ausführungsumgebung reagieren. Hier ist anzumerken, dass solche Änderungen typi-
scherweise extern von der Applikation stattfinden, d.h., in der (physischen) Umgebung in der sich
ein mobiles Gerät momentan befindet. Ein einfaches Beispiel ist das Ausschalten akustischer Signa-
le, wenn sich ein Benutzer in der realen Welt in einem Meeting befindet. Die Applikation adaptiert
ihr Verhalten dann entsprechend der aktuell detektierten Situation. Die Herausforderungen auf die-
sem Gebiet können folgendermaßen charakterisiert werden: (i) Wie kann Kontext auf syntaktischer
und semantischer Ebene von Applikationen aus der umgebenden Infrastruktur bezogen werden, ins-
besondere wenn man typische Probleme von Heterogenität und Anzahl der (Roh-)Datenquellen in
der Umgebung in Betracht zieht. (ii) durch das Fehlen einer zentralen Administration ist die Frage
von Bedeutung, wie verteilte unabhängige Komponenten zu einem bestimmten Teilsystem orche-
striert werden können, so dass sie zur Erreichung eines bestimmten Applikationsziels beitragen. Das
Hauptproblem ist in den unterschiedlichen Domänen von Infrastruktur und Applikationen zu su-
chen. Während eine Infrastruktur per Definition möglichst unabhängig von den einzelnen Klienten
operieren soll und daher hauptsächlich abhängig von den Daten operiert, die sich aktuell im System
befinden, ist eine kontextabhängige Applikation sehr domänenspezifisch. Sie besitzt ein konkretes
Applikationsziel und ist abhängig von spezialisierten Daten, welche ggf. erst aus Rohdaten des Sy-
stems extrahiert werden müssen.

Entkopplung in Raum und Zeit. Wir haben bereits darauf hingewiesen, dass lose gekoppelte
Systeme in vielen Bereichen der engen Koppelung im vorliegenden Anwendungsfeld überlegen sein
können und deshalb den Fokus dieser Arbeit bilden. Im Bereich der lose gekoppelten Systeme gibt
es bereits einige Arbeiten, die dieses Paradigma in zumeist klassischen verteilten Systemen unter-
stützen. Hier sind exemplarisch zu nennen das ungerichtete Senden („broadcasting”) von Daten in
einem System [WC02; AFZ97], geteilte Daten- oder Tupelräume [RC90; ACG86; CG89] und auf
Ereignissen basierende Publish/Subscribe Systeme [SA97; CRW01; CDF01; Müh02; FMG03]. Al-
le diese Ansätze haben gemeinsam, dass die Produzenten von Daten kein a priori Wissen über die
Konsumenten, d.h. Empfänger, dieser Daten haben müssen (und umgekehrt). Beide Parteien sind
unabhängig voneinander und in der Regel gegenseitig anonym. Alle oben genannten Implementie-
rungen für lose gekoppelte Systeme sind Beispiele für zwischengeschaltete Infrastrukturen, die dafür
Sorge tragen, dass Sender und Empfänger ohne explizites Wissen über den Anderen miteinander in-
teragieren können. Die jeweilige Infrastruktur ist dafür verantwortlich, Daten von der Quelle zu den
jeweiligen Senken zu transportieren. Die Interaktion zwischen Sendern und Empfängern ist deshalb
auch typischerweise datengesteuert. Ein solches Verhalten ist inbesondere interessant für die in der
vorliegenden Arbeit betrachteten Szenarien, in denen das „Was” wichtiger für Applikationen ist als
das „Wer” das Ereignis beobachtet hat. Interaktion ist also inhärent datengesteuert.

Als weiterer Faktor kommt hinzu, dass die Zahl der Konsumenten von Daten als wesentlich grö-
ßer angenommen werden darf als die Zahl der Produzenten. In den großskalierenden Systemen, die
wir hier als Beispiel nehmen, ist darum die Notwendigkeit zur effizienten eins-zu-viele oder viele-zu-
viele Kommunikation gegeben („Multiplexer”). Als Beispiel sei hier ein einfacher Temperatursensor
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genannt, dessen Sensordaten für mehr als eine Applikation interessant sein können. Dies alles be-
gründet die Notwendigkeit der Entkopplung „im Raum.”

Zusätzlich ist eine Entkopplung in der Zeit notwendig. Dies lässt sich leicht aus den bereits ge-
nannten Charakteristika mobiler Systeme ableiten. Oftmals ist es für einen potenziellen Empfänger
einer Nachricht schlicht nicht möglich zum normalen Empfangszeitpunkt auch wirklich empfangs-
bereit zu sein. Sei es weil das Gerät zu diesem Zeitpunkt ausgeschaltet ist oder weil es anderweitig
nicht erreichbar ist. Auch hier kann eine entsprechend ausgestattete Infrastruktur wesentliche Funk-
tionen dieser Entkopplung zur Verfügung stellen.

Effiziente Verteilung von Nachrichten in mobilen Systemen. Ein weiteres Merkmal der
in dieser Arbeit betrachteten ubiquitären Systeme ist die Notwendigkeit einer effizienten und ska-
lierbaren Nachrichtenverteilung. Solche Systeme können zu sehr großen und komplexen Systemen
skalieren. Dies kann anhand zweier Dimensionen geschehen: (i) der reinen physikalischen Grö-
ße von global verteilten vernetzten Systemen, die möglicherweise eine ganze Stadt oder sogar den
gesamten Globus umspannen und (ii) der inhärenten Komplexität. (ii) bezieht sich auf die immer
höhere Integration von elektronischen Komponenten und der damit einhergehenden steigenden An-
zahl von Prozessoren in immer mehr alltagsweltlichen Artefakten. Auch in (physikalisch) kleinen
Umgebungen können sich so eine große Anzahl vernetzter System finden lassen. Als Beispiel kann
hier ein PKW dienen, in dem mehrere hundert Kleinst-Computer ihren Dienst versehen. Ein groß-
skalierendes System muss daher nicht notwendigerweise auch ein großes (physikalisches) Gebiet
beanspruchen. Als Konsequenz aus den vorhergehenden Betrachtungen kann postuliert werden, dass
eine Infrastruktur mit einer sehr großen Anzahl von Daten umgehen können muss. Viele Produzenten
produzieren Daten für viele Konsumenten. Solche Daten „schweben” dann in großer Anzahl durch
ein vernetztes System. Daraus resultiert die Notwendigkeit der effizienten Behandlung dieser Daten,
sowohl auf der Ebene der Verteilung als auch der Ebene des Managements. Hier sei als Beispiel das
Problem des „Eigentums” von Daten genannt und insbesondere die verteilte Garbage Collection,
also das kontrollierte Entfernen von Daten aus dem Gesamtsystem.

Als die obige Diskussion überspannende Beobachtung kann festgestellt werden, dass ubiquitäre
Systeme sich schlecht auf eine spezielle Problem-Domäne eingrenzen lassen. Das Gegenteil ist der
Fall. Wir müssen einen stark holistisch geprägten Ansatz für die Unterstützung solcher Systeme
wählen. In der vorliegenden Arbeit stellen wir uns dieser Herausforderung und geben eine Archi-
tektur für einen veteilten Notifikations-Dienst für ubiquitäre Umgebungen an, der die begenannten
Anforderungen adressiert und in diesem Kontext neuartige Lösungen entwickelt.

Ergebnisse dieser Arbeit
Der Ansatzpunkt dieser Dissertation ist die Vision der zukünftigen und hochgradig vernetzten ubi-
quitären Systeme. Benutzer dieser Systeme werden in ihrer Dienstenutzung andere Schwerpunkte
haben als das in heutigen Systemen beobachtbar ist. Eingebettet in Umgebungen, die eine Vielzahl
nützlicher Dienste anbieten, werden Dienstnutzungszenarien mit entsprechenden Zugriffsmechanis-
men geprägt sein von einem hohen Maß an Spontanität. Benutzer greifen in solchen Szenarien spon-
tan und ad-hoc auf sie umgebende Dienste zu, abhängig von ihrer jeweiligen Situation. Hier spie-
len lokations-basierende Dienste, also Dienste die angepasst an die jeweilige Position ihre Dienste
erbringen, eine herausragende Rolle. Wir glauben, dass Benutzer sich dennoch dabei auf persona-
lisierte mobile Geräte verlassen werden, die vom jeweiligen Benutzer in die jeweilige Umgebung
eingebracht werden (vgl. „Pervasive Computing,” weiter oben).



Zusammenfassung ix

Daher ist es notwendig, unterschiedlichste mobile Geräte effizient zu integrieren und zu unterstüt-
zen. Ein Beispiel dafür ist die effiziente Lieferung von Informationen an den jeweiligen Benutzer
bzw. dessen Gerät. Andere essentielle Herausforderungen dieses Modells haben wir bereits im vor-
angegangenen Abschnitt charakterisiert.

In dieser Arbeit argumentieren wir, dass im Hinblick auf diese Herausforderungen ein Teil der
Lösungen zu den genannten Problemen in die Infrastruktur angesiedelt sein müssen. Daher ist es
notwendig, die Infrastruktur zu einem gewissen Grade an diese neuen Herausforderungen anzupas-
sen, was zu neuartigen Anforderungen und Lösungen für eine Infrastrukturunterstützung führt.

Dies erfordert ein grundlegend verändertes Systemmodell, verglichen mit „klassischen” verteil-
ten Systemen. Dort kann das System aus verlässlichen und konkreten Annahmen über das Verhal-
ten der jeweiligen Komponenten aufgebaut werden. Übliche Annahmen sind: Stationäre Klienten,
verlässliche, breitbandige und dauerhafte Netzwerkverbindungen untereinander, sowie eine gewis-
se Konstanz der Interaktions-Beziehungen, d.h. der Kontext der Verarbeitung verändert sich wenig
bis gar nicht. Darüber hinaus wird oftmals auch die Existenz einer zentralisierten Administration
angenommen. Im Lichte dieser Annahmen folgen daher bestimmte Designentscheidungen, die wir
hier als Black-Box Modell bezeichnen wollen. Effektiv wird die Existenz eines verteilten Systems in
der Infrastruktur-Schicht „versteckt,” so dass sich viele Aspekte des Systems genauso wie im nicht-
verteilten Fall verhalten. Mehr noch, komplette Teile einer Applikation können z.T. dauerhaft in die
Infrastruktur ausgelagert werden. Dieser Ansatz ist basierend auf den Annahmen valide.

Wir argumentieren hingegen, dass ein solcher Ansatz im betrachteten Anwendungsfall nicht län-
ger gültig ist und daher scheitert. In ubiquitären Systemen findet Evolution nicht graduell statt,
sondern rapide. Komponenten verändern sich oft und sind dezentral gesteuert. Klienten und auch
Dienste sind mobil und daher als kurzlebig anzusehen. Kontrolle findet nicht oder nur dezentral
statt. Große Teile des Systems wie insbesondere die Netzwerkverbindungen sind als unzuverlässig
einzustufen. Dementsprechend muss Interaktion i.W. opportunistisch und lose gekoppelt sein.

Um diesen Paradigmenwechsel zu dokumentieren, ist ein wesentliches Ergebnis von Kapitel 2 die
eingehende Analyse der Defizite einer klassischen Middleware im Kontext der ubiquitären mobilen
Systeme. Teil der Analyse ist die Erstellung einer detailierten Anforderungsliste für die Erweiterung
klassischer Infrastrukturen im Hinblick auf den Einsatz in ubiquitären Szenarien. Damit einherge-
hend zeigt Kapitel 3, dass eine aussichtsreiche Basis für eine solche evolutionäre Erweiterung das
bekannte Publish/Subscribe Paradigma ist. Wir zeigen klar auf, auch im direkten Vergleich mit an-
deren Infrastruktur-Paradigmen, welche Anforderungen erfüllt sind und wo sich Lücken zeigen, die
diese Arbeit zu füllen sucht. Nachfolgende Ergebnisse dieser Arbeit beziehen sich konsequenterwei-
se auf die Ergebnisse aus Kapitel 2 and 3.

Eine Kernaussage dieser Arbeit ist, dass eine angemessene Form der Mobilitätsunterstützung Teil
der Infrastrukturaufgaben sein muss. Die heute oftmals vorgefundene Delegation an die Anwen-
dungsschicht macht im Anbetracht folgender Anwendungsszenarien nur eingeschränkt Sinn: (1)
„Legacy” Anwendungen, also Anwendungen, die bereits im Einsatz sind, sollen nach wie vor lauf-
fähig sein, sowohl im statischen wie im mobilen Fall; (2) Anwendungen, die explizit die zusätzlich
vorhandenen Informationen über Lokalität und Mobilität nutzen wollen oder müssen. Aus (1) folgt
direkt, dass die bestehende Schnittstelle zu der Infrastruktur und auch deren Verhalten im mobi-
len und nicht-mobilen Einsatz gleich erfahrbar sein muss. Aus (1) und (2) zusammen folgern wir,
dass der Ansatz der vorliegenden Arbeit, also die evolutionäre Erweiterung eines bestehenden und
erfolgreich im Einsatz befindlichen Notifikationsdienstes, der kompletten Neuerstellung einer In-
frastruktur vorzuziehen ist. Aufgabe der Infrastruktur ist dann natürlich eine Behandlung der neu
hinzugekommenen Anforderungen der Mobilitätsunterstützung. Als Konsequenz können dann An-
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wendungen, die in die obige Kategorie (1) fallen, von einem statischen Kontext in einen mobilen
Kontext transferiert werden. Hingegen erfordert (2) eine weitgehend automatisierte Behandlung von
Lokationswechseln in der Infrastruktur. Dann ist Lokationsinformation unabhängig von einer be-
stimmten Applikation und nur noch gebunden an die aktuelle Bewegung eines Objektes im realen
Raum.

Mobilitätsunterstützung im Kontext eines verteilten Notifikationsdienstes ist daher das zentrale
Thema der Kapitel 5, 6 und 7. Flankiert werden die genannten Kapitel durch Grundlagen aus Kapi-
tel 4.

Das Hauptresultat von Kapitel 5 ist eine Lösung für die transparente Einbindung mobiler Klienten
in einen verteilten Notifikationsdienst. Das Ausblenden verschiedener Aspekte von Mobilität ist eine
übliche Anforderung der Anwendungsebene mobiler Klienten an die Infrastruktur. Im hier betrach-
teten speziellen Anwendungsfall, zusammen mit einem Notifikationsdienst, ergeben sich darüber
hinaus besondere Anforderungen, wenn Klienten Nachrichtenbroker im Netzwerk des Notifikati-
onsdienstes verlassen oder wechseln (engl.: Roaming). Ein solcher Wechsel soll möglichst für einen
Klienten unspürbar sein. Mobilitäts-Transparenz ist ein erster notwendiger Schritt das erfolgreiche
Paradigma des Publish/Subscribe vom statischen Anwendungsfall in hoch mobile und dynamische
Szenarien abbilden zu können. Wir präsentieren ein neues Verfahren zur dynamischen Weitervermitt-
lung von mobile Klienten an neue Broker, das die genannte Tranzparenz-Anforderungen erfüllt. Das
Verfahren erlaubt es, bestehende Anwendungen aus dem bisher angenommenen statischen Umfeld in
ein mobiles Umfeld zu transferieren, ohne dabei auf zugesicherte Eigenschaften der unterliegenden
Infrastruktur im mobilen Fall verzichten zu müssen. Die Spezifikation unseres Verfahrens beruht auf
einer detailierten Analyse der Anforderungen aus Sicht der Anwendungsebene und berücksichtigt
dabei andererseits auch die Auswirkungen auf den realisierenden Notifikationsdienst. Das eingeführ-
te Verfahren vereint nahtlos die bestehende Funktionalität des Content-based Routing, wie es in der
verwendeten Referenzimplementierung unseres Notifikationsdienstes zum Einsatz kommt, mit der
Unterstützung einer unterbrechungsfreien und Sender-FIFO geordneten Auslieferung von Nachrich-
ten an mobile Klienten. Damit unsere funktionalen Erweiterungen auch anwendbar sind für Klienten
des Notifikationsdienstes, die sich ihrer Mobilitätseigenschaften gar nicht bewusst sind, werden sie
vollständig in der Infrastruktur verborgen und bedürfen keiner Änderung der Schnittstelle zwischen
Klient und Notifikationsdienst. Das ist besonders wichtig in Szenarien, in denen bereits bestehende
Anwendungen in mobilen Umgebungen zum Einsatz kommen sollen. Eine weitere herausragende
Eigenschaft unseres Verfahrens ist, dass es sich ausschließlich auf bereits bestehende Funktionalitä-
ten des verwendeten Notifikationsdienstes abstützt. So bedarf es keiner zentralen Datenspeicherung
zur nachträglichen Versendung an Klienten, keiner zentralisierten Kontrolle und auch keiner Kom-
munikation außerhalb der verwendeten Publish/Subscribe Infrastruktur. Das spezifizierte Verfahren
bildet die zentralen qualitativen Eigenschaften des Publish/Subscribe Paradigmas, wie z.B. lose Kop-
pelung, Sender-FIFO oder Vollständigkeit, in angemessener Weise vom statischen Anwendungsfall
auf dynamische mobile Anwendungsszenarien ab.

In Kapitel 6 wird die Integration mobiler Klienten in unsere verteilte Publish/Subscribe Infrastruk-
tur einen wesentlichen Schritt weitergetrieben. Dort führen wir das Konzept der lokationsabhängi-
gen Subskriptionen und des lokationsabhängigen Matchings von Notifikationen und Subskriptionen
ein. Hier fließt auch das Referenz-Lokationsmodell ein, das wir in Kapitel 4 angeben. Mit Hilfe
des Lokationsmodells wird die Infrastruktur in die Lage versetzt, Lokationsbewußtsein von kontext-
sensitiven Anwendungen in effizienter Weise zu unterstützen. Dabei sind zwei große Herausforde-
rungen zu beachten: Erstens ist die jeweilige Anpassung einer lokationsabhängigen Subskription an
den jeweiligen Aufenthaltsort eines Klienten von der Infrastruktur durchzuführen und nicht vom je-
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weiligen Klienten. Zweitens ist besonderes Augenmerk auf die Realisierung eines effizienten und
unterbrechungsfreien Nachrichtenflusses zu legen. Dabei besteht die Gefahr darin, dass die Nach-
richtenzustellung ohne entsprechende Techniken in der Infrastruktur schnell zum simplen Fluten
im Netzwerk degeneriert. Das ist jedoch aufgrund der asymetrischen Resourcenverteilung zwischen
mobilen Geräten und Infrastruktur auf jeden Fall zu vermeiden. Wir geben daher in Kapitel 6 ein
adaptives Verfahren an, mittels dessen Klienten unserer Infrastruktur in die Lage versetzt werden,
ihr Interesse an lokationsspezifischen Informationen auf eine definierte Weise zu formulieren und an
den Notifikationsdienst weiter zu geben. Lokationsabhängige Subskriptionen, die so in das System
gelangen, werden danach von diesem gepflegt, angepasst und entsprechend der Lokationsspezifi-
kation ausgewertet. So gelangen nur aktuelle und zutreffende Informationen zum Klienten, ohne
das jener seine Subskriptionen jedesmal „manuell” anpassen muss. Ebenfalls automatisch angepasst
wird ein spezieller Platzhalter, der in Subskiptionen verwendet werden kann: �����. Er bezieht sich
jeweils auf die aktuell feststellbare Position eines Klienten und dient dazu, die räumliche Gültigkeit
einer Subskription in der realen Welt zu definieren. Dennoch ist es unabwendbar, dass ein Klient erst
mit Verzögerung oder gar nicht lokalisiert werden kann. Daher ist es sinnvoll und notwendig, eine
gewisse Unschärfe der Klienten-Positionierung bei der Nachrichtenzustellung zu verwenden. Das
ergibt sich ebenso aus dem Wunsch nach akkurater und zeitnaher, d.h. im Idealfall unterbrechungs-
freier Zustellung von lokationsabhängiger Information. Die einzige uns bekannte Alternative ist das
erwähnte Fluten von Nachrichten im Netzwerk. Um Fluten zu vermeiden, verwenden wir adapti-
ve Filter, die den Bereich der Nachrichtenzustellung anhand eines Bewegungsgraphen einschränken
und so effektiv ein Fluten vermeiden.

Dennoch reichen beide bisher eingeführten Lösungen nicht aus, ein spezifisches Problem der asyn-
chronen Kommunikation in mobilen Systemen zu lösen. Aufgrund der Entkopplung zwischen Sen-
der und Empfänger von Nachrichten kann der Klient nicht explizit notwendige Informationen zur
eigenen Initialisierung von einem Produzenten anfordern. Normalerweise wird hier angenommen,
dass ein System eine gewisse Latenzzeit aufweist, bis es sich eingeschwungen hat. In manchen Um-
gebungen kann diese Latenzzeit größer sein als die Zeit, die ein mobiler Klient dort verbringt. Außer-
dem widerspricht ein solches Verhalten dem Wunsch eines Benutzers nach spontaner Interaktion mit
dem System. Gesucht ist also ein weiteres Verfahren, dass es ermöglicht, die Einschwingphase zu
minimieren, auch wenn das Gesamtsystem lose gekoppelt ist. In Kapitel 7 geben wir daher ein Ver-
fahren an, das die Eigenschaften der beiden vorangegangenen Verfahren in einer Weise kombiniert,
dass ein Klient seine Latenzzeit minimieren kann. Im Allgemeinen braucht eine Anwendung eine
gewisse Anzahl an Notifikationen, um einen konsistenten Zustand zu erreichen, von dem ausgehend
eine normale Operation möglich ist. Der Zeitraum, über den sich diese passive Phase des „Zuhörens”
erstreckt, ist aufgrund der asynchronen Natur des Gesamtsystems nicht vorhersehbar. Wir adressie-
ren das Problem mit einem infrastrukturbasierten Ansatz und plazieren Pufferspeicher innerhalb des
Broker-Netzwerks derart, dass Klienten auf Notifikationen zugreifen können, die bereits in der Ver-
gangenheit durch das Netzwerk propagiert wurden und im normalen Modell des Publish/Subscribe
bereits aus dem System gelöscht sind. Um die Systemlast zu minimieren, geben wir darüber hinaus
noch eine Anzahl von Such- und Zusammenführungsstrategien für den Zugriff auf diese Pufferspei-
cher an. Zusammen genommen kann ein Klient auf diese Art und Weise vollkommen transparent
auf Informationen zur Initialisierung zugreifen und so i.d.R. seine Latenzzeit zur Aufnahme sei-
ner normalen Operationen minimieren. So konnten wir einen wichtigen Beitrag zur weitgehenden
Entkopplung von Sendern und Empfängern in Raum und Zeit liefern.

Ein wesentliches Resultat von Kapitel 2 ist die Identifikation und Klassifikation von Kontext als
wichtiger Quelle für angepasstes kontextsensitives Verhalten von Applikationen. Die Anpassungen
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sind typischerweise reaktiv, ausgelöst durch Veränderungen des externen Ausführungskontexts. In
Kapitel 8 zeigen wir, wie sich ein solches Verhalten auf allgemeine Entwurfsmuster für kontextsen-
sitive Anwendungen auswirkt und geben einen Entwurfsprozess an, der diesem Rechnung trägt. Als
Grundlage verwenden wir dazu das Paradigma der kontrollbasierten Koordination. Als Konsequenz
wird die abstrakte Applikationssemantik in Form von Finiten Automaten gekapselt und getrennt
von der Aquisition der Eingabedaten für die Automaten behandelt. Im Wesentlichen lehnt sich der
von uns vorgeschlagene Entwurfsprozess an Mechanismen an, wie sie auch im Paradigma des Mo-
del Driven Development vorzufinden sind. Unser Entwurfskonzept zeigt, wie die Spezifikation einer
Applikation in einem definierten Prozess auf entsprechende Subskriptionen abgebildet werden kann,
die wiederum zur Laufzeit auf den eigentlichen Daten in einem System operieren und so die not-
wendigen Eingaben für die Operation einer Anwendung liefern. Dies beinhaltet insbesondere auch
die Verwendung wohldefinierter Eventoperatoren, wie Aggregation und Komposition von Notifika-
tionen.

Fazit
Die vorliegende Arbeit entwickelt auf der Basis eigener Einschätzungen mehrere wichtige und neue
Erweiterungen eines etablierten Paradigmas verteilter Systeme, dem Publish/Subscribe Paradigma,
zu einer effizienten und einfach anzuwendenden Infrastruktur-Basis für die Verwendung in mobilen
ubiquitären Umgebungen. Wir haben die Schlüsselfaktoren analysiert, anhand derer sich ubiquitäre
Szenarien fundamental von konventionellen verteilten Systemen unterscheiden. Darauf aufbauend
haben wir gezeigt, dass Publish/Subscribe ein vielversprechender Ausgangspunkt für eine Infra-
struktur ist, die bereits einige der wesentlichen Aspekte ubiquitärer Systeme adressiert. Auf der
anderen Seite konnten wir zeigen, dass konventionelle Notifikationsdienste nicht ausreichend sind,
um alle genannten Schlüsselaspekte abzudecken. Wir sind überzeugt, dass unser daraus abgeleiteter
Ansatz der evolutionären Erweiterung bestehender Funktionalitäten einer Infrastruktur normaler-
weise einer kompletten Neuerschaffung vorzuziehen ist. Daher haben wir besonderes Augenmerk
darauf gerichtet, Verfahren angegeben, die explizit Gebrauch von Funktionalitäten machen, wie sie
in heutigen Systemen bereits vorzufinden sind. Als Basis dazu diente ein bereits existierender ver-
teilter Notifikationsdienst, der ein Content-based Routing Verfahren verwendet. Von diesen Grund-
funktionalitäten ausgehend haben wir allgemeine Verfahren angegeben, die insbesondere wichtige
Probleme der Unterstützung mobiler und kontextsensitiver Klienten lösen. Trotzdem sind alle Ver-
fahren allgemein genug, um auch auf andere Notifikationsdienste anwendbar zu sein. Ebenso haben
wir in dieser Arbeit die Auswirkungen auf den allgemeinen Programmentwurf für kontextabhängi-
ge Anwendungen untersucht, um so den gesammten Bogen von der Behandlung von Rohdaten bis
hin zur Generierung von Kontext abzudecken. In unserer Überzeugung stellt eine verteilte Publish/
Subscribe Infrastruktur, zusammen mit den von uns angegebenen neuen Verfahren eine neue, wich-
tige und dem Anwendungsgebiet angepasste Lösung für die Instrastrukturunterstützung in mobilen
und ubiquitären Umgebungen dar.
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1 Introduction

As for the future,
your task is not to forsee it, but to enable it.

From “Citadelle” by Antoine de Saint-Exupery, Poet and Pilot (1900-1944)

1.1 Motivation

Throughout the last years we have observed the tremendous success of mobile telephony and, more
recently, portable devices, like personal digital assistants (PDA) and laptop computers. Bundled
together with wireless communication interfaces and environmental sensors (e.g., GPS), many ex-
pect them to be a major technological trend and driving force for the next decade, both for research
and economy. Many researchers and analysts even believe that not only get devices mobile and
reasonably powerful but that the surroundings of these devices themselves get filled with all kinds
of communicating devices. This vision is called ubiquitous computing [Wei91; Wei93] or pervasive
computing. Especially pervasive computing, as used by IBM [IBM01b], focusses on technologies
necessary to enable users to seamlessly interact with the surrounding physical and social environ-
ment. The central underlying assumption is that users will always prefer a personalized (and hence
trustworthy) mobile device as the enabling technology for such interaction. Part of the interaction
can be the access to local resources found in the current environment, such as a printer-service, but
more important is the adaptation of applications to the current physical and executional context the
device is located in.

“Adaptation” is an important aspect of what usually is called “context-aware” or “situation-aware”
computing. Users of mobile devices interact with the current environment and at the same time
expect their devices to become “smart”, i.e., in changing situations a changing behavior is expected.
Part of this “smartness” of applications is awareness of the environment, demanding information
about the current computational as well as physical context. Information which is not part of a
mobile application or the mobile device, but is only available from the current (and ever changing)
infrastructure the device is located in. Probably the most prominent example for such context-
aware behavior are location-based information services, where the content provided by the service
is dependent on the actual position a device is located at.

However, on the advent of pervasive computing, where mobile devices will be interacting with
surroundings filled with all kinds of sensors, actuators, and other smart devices, we see a number of
fundamental key challenges:

Mobile systems. Obviously, mobility of users and their digital appliances is a major driving
force for pervasive systems. Clients and services move around freely. This introduces a significant
need to handle the inherent dynamics appropriately. Due to client mobility certain assumptions about

1
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possible modes of interaction fall short. For instance, the classical approach of using request/reply
or point-to-point connections between ports is not well suited, for the following reasons:

• Volatile bindings. For a mobile device it is necessary to know the name and address of a
resource it wants access to. Unfortunately, in changing environments (local) resources usually
are not bound to the same addresses. Hence, resources must be “discovered” before they can be
used. Some resource discovery schemes were proposed, e.g., Jini [Sun99a], but often resource
consumption on the device is considerably high and a lightweight and data-driven approach is
more desirable. Association and coordination of entities must be built-up on-the-fly.

• Tight coupling. Phenomena like connection loss or unexpected behavior of one communica-
tion partner is considered an erroneous state in the request/reply paradigm and is not assumed
to happen often. Unfortunately, this exact behavior is common in mobile systems and must be
integrated into the model of interaction. Clients might move out of communication range of
a wireless connection or are simply powered off. To deal with the unpredictability of mobile
environments, a different paradigm than request/reply seems to be more adequate.

Moreover, handling the implicit complexity of joining and leaving a local environment easily can
overwhelm a small, resource-limited device. In such situations an additional layer of indirection
can be considered beneficial for the versatility of the overall system. This can cater for a small
device’s demand for transparency of mobility. Certain aspects of mobility then are delegated into
the infrastructure. On the other hand, awareness of mobility can be a valuable input for context-
aware applications. Then, the infrastructure should provide means such that applications can draw
from this awareness.

Adaptive behavior. An important class of applications for pervasive computing systems are
context-sensitive or context-aware applications. In general, these applications change their behavior
dependent on the current execution environment. Usually, such change in behavior is reactive in
nature. Often, it is triggered by events occuring in the physical environment, like a person entering a
room. The application then adapts its behavior in order to cope with the new situation or context. For
example, the user may be notified when a shop is in the vicinity offering an item on a shopping list
on the device. The challenging questions here are: (i) how can “context” on the level of the syntax
and semantics of an application be extracted from the various and heterogeneous raw-data items pro-
duced by the innumerable sensors and devices around, and (ii) how can distributed and independent
components be orchestrated for a task-oriented application to contribute to the application’s goal.
The complicating issue here lies in the different domains of infrastructures and context-dependent
applications: while the former is supposed to stay general-purpose, and thus is driven only by the
data coming into the system, the latter usually is special purpose, has a thread of control and is goal
oriented, driven by interpreting base data.

Decoupling in space and time. As mentioned above, asynchronous communication as un-
derlying interaction paradigm is favorable over tightly coupled systems in the domain of perva-
sive computing systems. A possible choice is loose coupling as it can be found in broadcasting
data [WC02; AFZ97], shared data- or tuplespaces [RC90; ACG86; CG89], or publish/subscribe sys-
tems [SA97; CRW01; CDF01; Müh02; FMG03]. All approaches have in common that producers of
data, e.g., sensors, and consumers are decoupled and anonymous to each other. An interposed in-
frastructure takes care of delivering data from producers to consumers. Additionally, for adaptation
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to changing environments, the “What” has happend is more important than “Who” has produced the
data. Often, the identity of the producer is not important for the execution of an application. Thus,
interaction gets much more data-driven. In the settings we consider in this thesis, it can further be
assumed that the number of consumers of data is larger than the number of producers. This intro-
duces the need for efficient one-to-many and many-to-many communication. For example, sensor
data of a temperature sensor probably can contribute to more than a single application’s thread of
execution. This constitutes the need for decoupling in space.

Moreover, as we cannot assume that sender and receipient of data are online permanently, we have
to strive for effective means to achieve a resonable decoupling in time as well. Especially in mobile
settings where disconnectedness and offline operation is common, a mobile client needs facilities in
the infrastructure to re-establish a consistent state for commencing its operation.

Efficient Information Dissemination in Mobile Systems. Efficiency and scalability of in-
formation dissemination is a crucial requirement for large-scale mobile or ubiquitous systems. As
mentioned above, many-to-many communication is a first step towards efficient information dis-
semination in such settings. However, pervasive and ubiquitous computing systems can scale along
two dimensions. First, in their physical extend, like whole cities or even the globe; Second, in their
computational complexity. An environment filled with communicating, networked digital appliances
does not have to grow to a large physical size to be considered large-scale.

Consequently, the number of data items in the system can be assumed to be considerably large.
Large amounts of single data items are “floating” through the system. For instance, sensors often
publish their data readings periodically, like a temperature sensor publishing data readings every few
seconds. This imposes the need for efficient means for data dissemination as well as data manage-
ment. For example, a distributed garbage collection is hard to conduct in anonymous and decoupled
settings.

Together, the key challenges of pervasive computing systems are not focussed on a single problem
domain. The opposite is the case. Therefore, a more holistic view on supporting such systems is
needed. In this thesis we accept this requirement and provide solutions to the named challenges on
the level of an architecture for a distributed notification service for pervasive computing environ-
ments.

1.2 Contributions of this Thesis

The starting point of this thesis is the vision of future mobile and pervasive computing scenarios.
Users are likely to use and access services and data “spontaneously” and ad hoc depending on their
current situation. Location-dependent services, i.e., services which are only available at a particular
site, play a central role in such scenarios. Service usage will take place to a significant extent through
mobile devices the users carry around.

Hence, integration of and efficient information delivery to mobile devices is of outstanding impor-
tance. In the previous Section 1.1 we introduced the fundamental challenges for supporting mobile
and pervasive scenarios.

In this thesis we argue that in the face of the challenges stated above many of the problems in-
volved require solutions integrated into the core of a strong supporting middleware. In static dis-
tributed systems a middleware can be built around concrete assumptions about its clients. Usually,
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this includes fixed devices, permanent and reliable network connections, and a static context. Evolu-
tion takes place slowly and only gradually. Naturally, this leads to the rationale of a black box model.
Effectively, the side-effects of distribution are hidden in the infrastructure. Even complete parts of
applications easily can be relocated into the middleware for execution. We argue that this approach
of a black box is likely to fail in mobile and pervasive settings. Evolution takes place rapidly, devices
are mobile, and reliable network connections are hard to maintain. A central contribution of Chap-
ter 2 therefore is the thourough analysis of the shortcomings of traditional middleware in the face of
the advent of mobile, pervasive settings. It leads to a detailed list of requirements for middleware
extensions in order to facilitate for proper support. Additionally, in Chapter 3 we show that a promis-
ing candidate for a basis for extensions is the successfully deployed publish/subscribe paradigm. We
clearly state which requirements are met when employing a distributed publish/subscribe notifica-
tion service, like the REBECA notification service, for interaction and where the publish/subscribe
paradigm itself, and therefore REBECA, falls short. Subsequent contributions of this thesis address
these shortcomings and are centered around the challenges as introduced in Section 1.1.

We argue that support for mobility should be an issue of the publish/subscribe middleware it-
self and not be delegated to the application layer. Three kinds of application scenarios have to be
supported: i) existing applications in a static environment, ii) existing applications in a mobile en-
vironment, iii) mobility-aware applications. Since publish/subscribe systems and applications have
been deployed very successfully, extending existing systems and models is preferred to creating new
“mobile” middleware from scratch. As a consequence, the middleware must transparently handle
some of the new mobility issues. This allows existing event-based applications to directly interact
with and even to be deployed as mobile applications. On the other hand, the third scenario requires
the middleware to support a (semi-)automated handling of location changes. If no such support is
available, mobility is actually controlled by the application and not by the movement of the client.

We provide solutions for the two different and orthogonal types of mobility. The first type of
mobility is support for location transparency, where clients may temporarily disconnect from the
pub/sub system (due to power-saving requirements or the network characteristics). This means that
applications are not necessarily aware of the fact that the client is moving, allowing existing applica-
tions to be transferred to mobile environments. This is the main contribution of Chapter 5 together
with the foundations laid in Chapter 4.

The second type of support is for mobility-aware applications, where clients remain attached
to their broker and have an application-level notion of location, which is described by location-
dependent subscriptions introduced in Chapter 4 and put to use in Chapter 6. The location model
specified in Chapter 4 is explicitly tailored to be directly deployable as part of the distributed routing
infrastructure, on one hand, and to be usable for the convenient specification of location-dependent
subscriptions in applications, on the other hand.

However, neither approach can prevent that applications in mobile and pervasive settings may
face an inherent problem of asynchronous and event-driven systems: the need to listen to a stream of
events until an application can commence operation from a consistent state. This is not a significant
problem in conventional distributed systems settings, but in a mobile setting it can render an appli-
cation useless because it may take too long to receive enough information for resuming operation.
Hence, we devised novel mechanisms for placing distributed buffers in the network near the clients
such that clients have convenient and timely access to information possibly delivered in the past and
before the client’s arrival at the current location. This effectively provides for decoupling not only in
space but also in time of producers and consumers of information.

Finally, in Chapter 8 we define a framework for the development of context-aware applications,
based on a structured approach leveraging finite state machines as a convenient abstraction for the
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specification of an application’s behavior. The notion of Context is used as input for the transition
between the states. Additionally, we clearly show how such rather high-level information can be
obtained from raw-data in the system by means of interpretation and aggregation of notification
data.

Summing up, this thesis provides novel solutions to the challenges inherent in middleware support
for pervasive computing environments. It clearly shows that leveraging the successfully deployed
publish/subscribe paradigm is a convenient as well as appropriate way to address these issues. The
solutions provided solve many problems of evolving the publish/subscribe paradigm to an important
part of a middleware for supporting context-aware applications in mobile and pervasive computing
systems.

1.3 Organization of this Thesis
The organization of this thesis is as follows:

• Chapter 2 presents the basic motivation underlying this thesis by giving a vision of future
mobile scenarios and describes the setting in which subsequent solutions are located. It follows
a characterization of the challenges infrastructural support faces in such highly mobile and
dynamic settings. This is followed by a thourough analysis of the requirements for building
appropriate support into the middleware. The central result is a number of requirements that
are taken into account in the subsequent chapters.

• Chapter 3 lays the foundations of publish/subscribe systems for readers not familiar with this
important paradigm as well as clearly defines the core properties of the assumed model of
interaction. This is followed by the introduction of REBECA, the publish/subscribe notification
service we used as starting point for our extensions. The chapter is concluded by a detailed
description and discussion of related work to the contributions in this thesis.

• Chapter 4 introduces location as a source of information being of outstanding importance
among data about the context. In this chapter we characterize the properties of location and
location models and introduce an optimized reference location model for the use within a
distributed publish/subscribe notification service.

• Chapter 5 is concerned with the integration of mobile devices into a distributed publish/
subscribe notification servive. It characterizes the needs of applications running on such de-
vices for transparent location handling within the infrastructure. A solution is presented that
optimally takes into account such needs.

• Chapter 6 applies the location model introduced in Chapter 4 to scenarios where clients of the
publish/subscribe notification service are mobility-aware, i.e., have to express their need for
location-dependent information. A solution is presented that takes into account and facilitates
for location-dependent subscriptions and notification delivery, on one hand, but also exploits
the unavoidable uncertainty of message delivery for routing optimizations in the infrastructure,
on the other.

• Chapter 7 introduces a distributed scheme of buffering in the broker network for appropri-
atly taking care of decoupling producers and consumers in space and time. The underlying
observation is that mobile clients need a certain number of events to commence operation in
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a new environment. Due to the asynchronous nature of event-driven systems, this can lead
to unwanted delays or can even render applications useless. To cope with this situation we
introduce the concept of subscribing into the past.

• Chapter 8 integrates the finding of the previous chapters into a model for the structured spec-
ification of context-aware applications for pervasive environments. Finite state machines are
leveraged to specify behavior on the level of applications. Additionally, mappings are pro-
vided to transform specifications into a set of appropriate subscriptions for context-related
data.

• Chapter 9 gives details on the implementation of the concepts presented in this thesis. We
describe the implementation of the REBECA notification service which serves as a basis for
the extensions made. After this we introduce implementation details of our mobility extension
for accommodating mobile clients. These extensions are based on the algorithm introduced in
Chapter 5. Then, details are given for the integration of location-dependent subscriptions into
the core of the REBECA notification service as specified in the Chapters 4 and 6.

• Finally, Chapter 10 concludes this thesis by summing up the results and characterizing the
directions of possible future work.

������������



2 Ubiquitous and Pervasive Computing

“Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people
inside a computer-generated world, ubiquitous computing forces the computer to live out here in
the world with people. Virtual reality is primarily a horse power problem; ubiquitous computing is
a very difficult integration of human factors, computer science, engineering, and social sciences.”

Mark Weiser

2.1 Introduction
The terms ubiquitous computing and pervasive computing were introduced quite recently. As a first
impression of their meaning, we employ an official definition of pervasive computing provided by
IBM:

“Convenient access, through a new class of appliances, to relevant information with the
ability to easily take action on it when and where you need to.” [HMNS01]

Mark Weiser [Wei95], the ultimate founder of ubiquitous computing, had a somewhat more holis-
tic1 approach in mind. He introduced the vision of ubiquitous computing (also called ubicomp) in
1991: he envisioned a future of “invisible” integration of computing hardware into everyday arti-
facts. In his fundamental article "The Computer for the 21st Century” [Wei91] he elaborated about
“the computer that disappears”. For Weiser the way into the 21st century was obvious and straight-
forward: technological advancements especially in the sector of micro-electronics will turn out as
one of the major driving forces behind the possibility to implement and foster ubiquitous computing
applications [Mat01]. Computers are getting smaller, cheaper, and more powerful. Networking tech-
nology, as a second major force, is following along the same path and will get smaller, cheaper, and
more powerful, too. Consequently, as prices for computing power drops, it is expected that more and
more everyday artifacts will be equipped with a reasonable amount of computing power and (maybe
even more importantly) are networked together into a virtually unique network of communicating
“things that think”2. Then, in the pure sense of the word, computing gets “ubiquitous”: anywhere
and anytime. This is considered to be the third wave of computing. In Figure 2.1 we characterized
all three waves.

Ubicomp: the third wave of computing. Mainframe computing is the distinctive factor for
the first wave as shown in the figure. It can be characterized as “one computer, many people”: com-
puting resources are scarce and hence are shared among a large number of users. Thus, usage must

1 For a good definition of “holistic” see [Hol04] or the Merriam-Webster Online Dictionary[MW03].
2 The “Things That Think” consortium is one of many projects that try to embed significant computing resources into

everyday objects [Con03].

7



2.1 Introduction 8
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One User, Many Computers

Figure 2.1: The three waves of computing

be well-prepared and planned ahead properly. Consequently, execution times were long. Computers
were expensive equipment, run by experts behind closed doors.

The second wave is the current era of personal computing or “one computer, one user”: since the
mid-eighties the number of users of personal computers (PC) is larger than the number of mainframe
users. People have direct control of and exclusive access to computing power. Tasks do not have
to be planned well ahead anymore and interaction is spontaneous. But the drawback compared to
the first wave is the responsibility for operating and maintaining such a system the user is burdened
with. Especially if malfunctioning, considerable attention is required by the user.

The third wave is the upcoming era of ubiquitous and pervasive computing or “one user, many
computers”. As the first wave was characterized by every computer having many users, now every
user interacts with many computers. Interaction with computers gets casual and subconscious. The
user is the natural focus of computing and is moving through a world filled with (embedded) com-
puters which are networked and interact between each other to spontaneously fullfil a user’s demand.
Everyone is continually interacting with hundreds or thousands of nearby computers. It is important
to note that in such a scenario, not the computing power is the scarce resource (first wave), but the
user’s attention. Therefore, distraction intensive interaction (second wave) is not desirable.

Some people might consider such pervasiveness of computing and sensor hardware to be unset-
tling or even threatening. For Weiser, this technological trend leads to a simple thesis:

“The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.”
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To explain this thesis, Weiser picks up the “technology” of writing as an example:

“Consider writing, perhaps the first information technology: The ability to capture a
symbolic representation of a spoken language for long-term usage freed information
from the limits of individual memory. Today this technology is ubiquitous in industri-
alized countries. Not only do books, magazines and newspapers convey written infor-
mation, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers
are covered in writing. The constant background presence of these products of “liter-
acy technology” does not require active attention, but the information to be conveyed is
ready for use at a glance. It is difficult to imagine modern life otherwise.”

Further he states:

“Such a disappearance is a fundamental consequence not of technology, but of human
psychology. Whenever people learn something sufficiently well, they cease to be aware
of it. When you look at a street sign, for example, you absorb its information without
consciously performing the act of reading.”

The challenge: making technology “calm”. Building a bridge to computer technology,
Weiser states in his article “Ubiquitous Computing” [Wei93] in 1993 :

““[. . . ] The computer today is isolated and isolating from the overall situation, and fails
to get out of the way of the work. In other words, rather than being a tool through which
we work, and so which disappears from our awareness, the computer too often remains
the focus of attention.”

The essence of his believe was that we will have to rely on computers where ever we are and what
ever we do. But, contrary to what we are used to, the focus of attention is different: today, comput-
ers are distracting and designed to attrack our attention; in his vision, computers are embedded in
everything and simply “doing their job”.

Given that the number of computing devices is expected to explode and to increase by a factor
of thousand or even more, unobtrusiveness, or “calm technology” as Weiser put it [WB96], is a
mere necessity. As striking as Weiser’s vision is, as complex it appears to be realised. Although
technology advances at a quick pace, nevertheless, it seems unlikely that it will reach the necessary
sophistication and market quality within the next decade at least.

Pervasive Computing. The industrial term pervasive computing, introduced by IBM on their
home page for pervasive computing [IBM01b], has a somewhat different focus. It does not stress the
idea of “calmness” and “unobtrusiveness” as much as Weiser did. It follows a more pragmatic ap-
proach, in which the focus lies on enabling technologies for users to access data anytime, anywhere,
according to their actual need.

The underlying thesis is that it is likely that some sort of “smart” device will prevail for a user’s
interaction with the surrounding physical and social environment. The thesis is that a personal-
ized, implicitly trusted, mobile wireless communication device for interaction will be favored over a
completely decentralized ad-hoc interaction model, as favored in ubiquitous computing.

Thus, mobility and communication in their various forms and with their implications for system
design are central challenges. In this thesis we assume the idea of pervasive computing when for-
mulating our system model in Section 2.2.1.
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After this short introduction we will highlight some of the challenges this exciting new field of
research imposes on “traditional” fields of computer science. The next Section will discuss the chal-
lenges for research on pervasive computing in more detail and analyze the additional requirements
we have to face. To do so, we distinguish between requirements stemming from various levels
of system design. In the center of the discussion we place infrastructural support for a nomadic
environment as facilitator and mediator for mobile devices, mobile applications, and the physical
surrounding, where computional resources are embedded and serve as partners for interaction.

2.2 Challenges in Pervasive Computing
The core challenge in pervasive computing, implicit in all the issues named so far, is what Lou
Gerstner, past IBM Chairman and CEO, pinpointed in the following quote:

““[. . . ] a billion people interacting with a million e-businesses with a trillion intelligent
devices interconnected [. . . ]”

Although we do not favor the emphasis on “e-businesses”, the challenge remains: to cope with
large-scale pervasive computing systems where a large number of devices and software components
is interacting. Interestingly, a pervasive environment can be large scale along two dimensions: (i)
in terms of physical extension and (ii) in terms of “computers per cubic centimeter”. While (i)
is corresponding to a traditional model of large scale, (ii) is a consequence of the “third wave of
computing” (cf. Figure 2.1 on Page 8). There, one assumes the surrounding to be saturated with
computing devices, hence resulting in a large scale system which does not necessarily has a large
extension.

Another approach and a more infrastructure-based characterization is given by [Sat01]: there, the
challenges in pervasive computing are characterized along three stages (cf. Figure 2.2 on Page 11).
The characterization of the problem space starts with issues raised by distributed systems, like, re-
mote communication and remote information access. The next dimension is mobile computing,
adding genuine new problems to system design, e.g., mobility and networking, as well as making
the already known problems more difficult, like remote information access for roaming devices. The
last dimension is pervasive computing, again introducing new challenges and making known prob-
lems more difficult, e.g., scalability. Prominent examples for genuine new problems are smartness
and context-awareness , i.e., the ability of an application to adapt to local context and thus, to appear
smart.

Kindberg and Fox [KF02] emphasize the influence of physical integration and spontaneous inter-
operation:

• Physical integration. In pervasive systems, the distinction between a passive object in phys-
ical space and computing nodes is softend. Physical objects can serve some special purpose
in the physical world and be a computing node at the same time. For example, a Smart-
Board [CTB+95; CFBS97] serves an actual physical purpose while recording what is written
on it. Even a coffee cup might be smart, i.e., being equipped with computational and com-
munication resources [BGS01]. Thus, integration between computing nodes and the physical
world is necessary. This will be detailed in Section 2.2.2.

• Spontaneous interoperation. In the field of pervasive systems, the collaboration of software
components builds up functionality such as services, clients, resources, or even whole ap-
plications. Contrary to a “classical” system model, this might be done on-the-fly. Hence,
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Figure 2.2: Growth of the problem space in pervasive computing

infrastructural components vary over time and space. Some entities might remain rather con-
stant and change slowly, other might appear or vanish spontaneously. In [KF02], spontaneous
interoperation is defined as the ability to interact with a set of communicating components that
can change both identity and functionality over time as its circumstances change. Therefore,
pervasive systems must be designed under the assumption that the whole system is highly
dynamic and bindings are volatile. This will be detailed in Section 2.2.4.

Franklin [Fra00] summarized the envisioned challenges from the point of view of ubiquitous data
management. Three key challenges are identified:

• Support for Mobility. Compactness of devices together with wireless communication means
that devices can be used in mobile situations. Thus, legacy applications must be supported in
a mobility transparent fashion as well as new applications that are built location-aware.

• Context Awareness. This includes the support for environment-aware devices, which want to
make use of environment-related context. Context-aware applications range from “intelligent
notification systems” that inform the user about events or data, to “smart spaces”, places/envi-
ronments that adapt to the users.

• Support for Collaboration. Support is needed for the collaboration of groups of people or
devices.

In Lee et al. [LXZL02], the high-level challenges for building location-dependent applications
and services, as the most significant class of context-aware applications, are summarized as follows:

• Mobile environment constraints. Mobile-pervasive environments are resource limited in terms
of bandwidth, quality of communication, frequent network disconnects, and limited local re-
sources.

• Spatial data. Data provision can be dependent on the current location of a user or device.
Moreover, relevance and validity of data might vary according to the location.

• User movement. Common tasks for data management, e.g., caching, become complicated
because of roaming users.
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We believe that such devices will depend on a strong infrastructure supporting interaction and
offering means for data management. “Trillion devices” will have to rely on strong mechanisms
to regulate the flow of information produced by other devices or software. Otherwise, relevant
information will be “drowned” in the “noise” produced by other entities. Often, sensors produce data
periodically or information needed by other entities for interaction is floating through the system.
Thus, the naïve mode of simply flooding data through the network does not scale to the systems we
envision.

After this overview, throughout the next sections we will analyze the requirements for a middle-
ware platform from the perspective of the participants of such a system. But first we want to clarify
the actual system- and application model, which we assume as foundation for the remainder of this
thesis.

2.2.1 System Model
As we have shown, the terms ubiquitous and pervasive computing span a whole range of different
application domains and therefore system models. However, we have to limit this to a concrete
instance of a system model. In Figure 2.3, we have sketched the model we adhere to in the remain-
der of this thesis: the nomadic model of pervasive environment, as it is also used in the cooltown
project [KB; KBM+].

The model presented here is based on certain assumptions about the hardware and communication
resources available:

• Nomadicity. In the center of the model are the users who will be mobile and roaming around.

• Handy devices. Nomadic users will carry and use some mobile devices as enabling technology
for accessing the surroundings. These devices usually are personalized and have reasonable
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resources.

• Wireless communication. Easy-to-use wireless communication is expected to be built-in.

• Heterogeneity. There will be a diversity of devices. Specialization of function, e.g., digital
cameras and phones, will produce heterogeneity. Moreover, sensors and actuators can be
expected to be part of the surroundings.

• Fixed resources. The infrastructure has to provide fixed services, like printing, teller machines,
and kiosks. Support for location-based services can be expected.

• Wired backbone. The user is moving in an infrastructure where fixed resources also imply
strong networking and reliability.

The requirements we introduce throughout the following sections are based on this model.

2.2.2 Nomadicity and Devices
Kindberg and Fox, [KF02], among others, identify the need for integration of “smart things” into a
computing infrastructure. Besides this integration, the nomadicity of users and their devices raises
additional issues.

Devices can be mobile for a number of reasons, usually because they are carried around by a
user, like a mobile phone, a PDA, or a wearable computer. In other settings they might be mobile
autonomously, like robots, or because they are embedded into some larger device, like a car or a bus.

In the nomadic computing model, devices are mobile in changing surroundings, each full of other
devices, placed within the environment so that they become pervasive (cf. Figure 2.3). Ubiquitous
computing, on the other hand, originally has focussed on “backgrounding” devices, disappearing
into the environment. In this thesis, we take the general standpoint that devices are not “fading” into
the environment and are “magically” doing the right thing, but that devices are explicitly available
for collaboration and interaction. The “quality of interaction” to be expected from a device strongly
depends on whether the device is itself mobile. A device embedded into the infrastructure usually
has other resources available than a device that is carried around.

2.2.2.1 A Taxonomy of Device Mobility

In this section, we roughly follow the approach taken by Dix et al [DRD +00]. The first destinction
to make is the type of mobility we can assign to a device:

• Fixed. A fixed device is not changing location as in the mobile case. This class includes
sensors spread within the environment or base stations fixed at a particular place 3.

• Roaming. A roaming device is moving around and usually is subject to the will of others, like
a PDA carried around by a user.

• Autonomous. A device which is moving under its own control, e.g., a robot.

The next distinction is the relation to other devices encountered when mobile:
3 Please note that even fixed devices might change location over time. For example, when attached to a different part of the

infrastructure for management reasons.
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• Free Roaming. An important class of devices for this thesis are devices which are basically
self-contained. Their functionality is mostly independent from other devices in the vicinity
or the environment they operate in. Bindings into the infrastructure therefore are volatile
and transient. Examples are PDAs and wearable computers that explicitly are designed to be
independent of external sources. Interaction with other entities is opportunistic, often in order
to extend their basic functionality, e.g., to act location-aware. We discuss this later in the
context of location-dependent subscriptions. On the other hand, delegation of certain aspects
of mobility into the infrastructure in order to be oblivious to mobility is also an important
issue, and appropriate support by the infrastructure is needed.

• Embedded and Pervasive. The other extreme are embedded and pervasive devices. Often
these are devices other “free roaming” devices interact with. In this class we place sensors,
actuators and embedded devices, which are not self-contained by themselves, but are part of a
larger system. This class of devices either is source of information, e.g., sensors in a pervasive
environment, or rely on external funtionality provided by the infrastructure in order to operate
properly. An example might be a location-based service on a PDA.

After analyzing mobility from the viewpoint of mobile devices, throughout the following subsec-
tion we analyze the need for infrastructural support for mobile devices, complementing the above
stated.

2.2.2.2 Infrastructure Support for Mobile Devices

Mobile and stationary devices will be part of any pervasive computing system. Currently, only few
devices offer the amount of computational resources required, e.g., for spontaneous networking using
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Jini or SLP. Figure 2.4 [KVZ99] shows the design space of devices concerning their capabilities with
respect to three different dimensions.

• Computational Power. With this first dimension we assess the computational or processing
power a device has. This includes CPU performance, memory size, and size of persistant
storage. They are subsumed into one single dimension as they usually grow at comparable
rates as devices get larger. However, computational power is a gage for a device’s capability to
process data locally. Low computational power corresponds to the potential need for external
preprocessing.

• Communication. In pervasive systems the ability to communicate and to network is an im-
portant factor and constitutes a separate dimension. This includes bandwidth, the underlying
network technology used, and related issues, like online vs. offline operation or support for
uni- vs. bi-directional communication. The ability to communicate is an indicator of the de-
gree a device can participate in a pervasive environment. A device with low bandwidth should
not receive too much information at a time, otherwise the result is congestion on the network
link. It might also serve as an indicator for the necessity of pre-filtering information externally
to avoid such congestions.

• Autonomy. The third dimension in Figure 2.4 is labeled autonomy and indicates the ability of
a device to operate independently of the surrounding infrastructure. As autonomy is strongly
influenced by the other two dimensions, it is not truly orthogonal. The shaded regions are
meant to mark the relation between the first two dimensions and autonomy: the more pow-
erful a device is along the first two dimensions, the more the device is likely to be able to
operate without explicit support from the infrastructure. However, other factors besides pro-
cessing power and communication can pose serious limitations to the autonomy in a pervasive
environment. The most important are:

– Output. The capability to which extent a device can interact with a user is limited
by the available facilities for output. Limiting factors include display size, color vs.
monochrome, or audio.

– Input. Important for user interaction and therefore for autonomy is the efficiency of
available input devices, like keypad, voice, pen input, or keyboard.

– Flexibility and Extensibility. Autonomy is directly related to the generality of a device,
i.e. the ability to dynamically adapt to changing environments. This includes the ability
to install new software as well as the possibility to upgrade a device.

As illustration of the design space, we can identify certain device categories which we will revisit
and take as guiding examples throughout the remainder of this thesis. The classification should give
an impression of the character of such devices and the kind of support needed from the surrounding
infrastructure, i.e., tasks to be done externally.

• Sensors. Probably, the most ubiquitous devices are sensors. They are embedded into the
physical world and usually provide the most basic input for pervasive applications. Sensor
devices typically are equipped with the minimal computing power required to fulfill their
tasks. Communication facilities are wire-based or wireless, e.g., infrared. The typical purpose
is to serve solely as producers of specialized raw data. Thus, communication is uni-directional
and usually over a low-bandwidth link. Additionally, their mode of operation is often either
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event-driven, triggered by external changes in the physical surrounding, or periodical, i.e., data
is sent in short time intervalls, in contrast to a continuous transmission.

Examples include position sensors as used in the Active Badge (e.g., [WHFG92]) and ParcTab
(e.g., [WSA+95]) systems or sensors for environmental parameters as used in the Adaptive
Home project [MDA+; Moz98]. Processing of data is done externally in the infrastructure or
in some applications, respectively (see also Chapter 8).

• Actuators. Complementary to sensors are actuators. They also are embedded into real-world
objects, serving the opposite purpose than sensors. They are able to receive and process com-
mands as well as data in order to manipulate some entity. Usually, they implement a protocol
of more or less high complexity used to influence the behavior of the actual device or the
actuators.

To conserve energy, such devices are often intermittently offline. Hence, the infrastructure or
some other entity, e.g., a device proxy [ADH+99], facilitates basic management and integra-
tion services on behalf of the device.

• Information-processing devices. This class of devices can be assumed to be residing in the
lighter shaded area of Fig. 2.4. They have enough computational power to participate properly
in a certain environment properly and perform most of the basic tasks on their own, like
integration into the infrastructure. Nonetheless, even those devices might suffer significantly
from a comparatively slow and bandwidth restricted wireless link or too much data sent to
them directly for processing.

Integration of small devices. Devices, which are dependent according to the characterization
of Figure 2.4, rely to some extent on support from the infrastructure. One might argue that devices
belonging to this category will eventually become powerful enough to operate autonomously and
the problem of integrating small devices will vanish by itself, an assumption met by many modern
electronic artifacts. However, we argue that with more devices integrated into a system the desire to
integrate additional and smaller devices will grow. Hence, we state the following prediction on the
integration of small devices into mobile, pervasive environments:

REQUIREMENT 2.2.1 Middleware support. There will always be a significant class of devices
which is dependent on the support from the surrounding infrastructure in terms of computational
power, memory, persistent storage, or facilitation of integration.

2.2.3 Applications
The outstanding common denominator for pervasive applications in comparison to mobile applica-
tions is that such applications typically try to make use of the current surrounding. In a sense they
are aware of their context. Sometimes, the term Context-Aware Computing is used in a sense almost
synonymous to ubiquitous computing, emphasizing the importance of context. For example, in the
Active Badge project an application named teleporter is responsible for displaying data on a display
near a user, taking into account the location (context) of that user. In tourist guides, information is
displayed relative to a user’s position and orientation. An augmented meeting room might forward
calls relative to the situation in the meeting room. All these are examples for context-dependent
behavior of applications. The ultimate goal for context-aware applications is to adapt their functions
according to the current situation “anytime and anyplace”.
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2.2.3.1 Context and Context-dependent Applications

Using context is not a new concept for Computer Science. Context is often used as an umbrella
term for all external data influencing the execution of adaptive and reactive applications. The most
prominent examples for adaptive behavior in applications can be found in Artificial Intelligence and
Human-Computer Interaction. In the latter case, the provision of a customized user interface is a
common research topic. In Artificial Intelligence the issue of context arises in assorted areas, like
knowledge representation, natural language processing, or intelligent information retrieval. An ex-
ample for the early use of context can be found in McCarthy’s [Pag84] criticism of MYCIN [Sho76],
an expert system for advising physicians on certain infections. As we consider issues of artificial
intelligence out of scope for this thesis, we refer to, e.g., Akman and Surav [AS96] for an extensive
summary of context in AI.

Our concern in this thesis is context-awareness as incarnation of adaptive behavior for the area of
mobile communication, which we consider to be a main driving force for the development of mobile,
pervasive applications.

Dey, et al. [DA00; DSA01], provide a rather good overview over common definitions of the term
context. Another extensive survey can be found in [CK00].

Interestingly, a common observation in the literature, e.g., [DSA01; Win01], is that although the
term context is intuively understandable it is poorly defined. Therefore, comparison of research re-
lated to the use of context is hard to conduct. The definition and use of context is problem-centric and
iterative rather than universal and normative, the latter more desirable for the definition of conceptual
models as the one detailed in this thesis.

Nonetheless, we want to start by discussing some of the most common definitions as they are used
in the field of pervasive computing. One of the first documented uses of the term context-aware
computing can be found in Schilit et al [SAW94]. As many other authors after them, Schilit et
al., classify a new class of (mobile) applications “that are aware of the context in which they are
run”. Such “context-aware systems” adapt according to the location, collection of nearby persons
or devices, and the changes of such collections over time. Thereby, they already emphasize the
importance to react to events occuring over time in the physical world around an application. The
same point of view can be found in [DCEF02], where the authors state: “the defining feature of
mobile environments is the concept of change.”

This is leading directly to the requirement to support such reactive behavior:

REQUIREMENT 2.2.2 Reactive Behavior
Context-dependent applications require appropriate support for reactive behavior as they have to

respond accordingly to events occuring in the surrounding physical space by adapting their thread of
execution.

Enumerative and operational definitions. Common problem-centric definitions simply enu-
merate classes of physical raw data that can contribute to an application’s thread of execution.
In [BBC97] context consists of location, identities of people, time, season, temperature, etc. Sim-
ilar, in [PRM99], context is defined as location, environment, identity and time. These definitions
are difficult to apply since they only describe instances but not the underlying class of context,
making it hard to decide whether potentially new types of context information can be classified as
context information or not. Other definitions have provided synonyms for context, such as envi-
ronment [Bro96; WJH97] or situation [FJ98; HNBR97], that are used to emphazise certain aspects
of the more general context concept. A widely adopted operational definition is given by Dey and
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Abowd in [DA00]. They define context as “any information that can be used to characterize the
situation of entities [...] that are considered relevant to the interaction between a user and an appli-
cation, including the user and the application themselves. Context is typically the location, identity
and state of people, groups and computational and physical objects.” However, as it is also remarked
by Winograd [Win01], the use of open-ended phrases such as “any information” and “characterize”
is convenient for covering specific work of the authors but does not help to define context in general.
An operational definition should provide means to discern context information from information that
is not regarded to contribute to context adaptation. Such helpful and operational definition can be
found in [Win01] and characterizes the use of context in communication: “context is an operational
term: something is context because of the way it is used in interpretation, not due to its inherent
properties.” In other words, if something or someone is acting dependent on input of particular data,
then it is context information.

System-oriented definitions. Another view on the “context-problem” is provided by Lieber-
man and Selker [LS00]. They postulate that context is “beyond the ‘black box’”. For them, the field
of computer science is strongly bound to a position which is “antithetical to the context problem:
the search for context-independence”. Many areas of computer science explicitly treat the systems
of interest as black boxes. Especially, in research on distributed and networked systems, the ulti-
mate goal is the transparency and independence of underlying technologies. A rather good example
for this observation is the specification and semantics of MobileIP [Per98a; Per98b]. There, mobil-
ity is completely opaque to an application and resulting in transparency of mobility. In Harter, et
al., [HHS+99] and [HHS+02], a similar need for knowledge about “capabilities of the equipment
and networking infrastructure” is expressed. A similar view can be found in [GDH +01]. They
emphasize the danger of transparent access to remote resources in the face of network and remote
resource failures.

In traditional systems, an output function is completely determined by the (direct) input provided.
In [LS00], the authors stress the need to broaden the notion of input to the use of context as a
necessary source of input parameters. Interestingly, they identify a trade-off between the desire
for abstraction, as a means of determinism wanted, and context-sensitivity, as a means of provide
adaptation and flexibility. Consequently, the extent to which a system is context-aware then depends
on where the boundaries of the system are. This system-centric view is different from most other
definitions that follow a strict context-centric point of view.

REQUIREMENT 2.2.3 Beyond the black box
For context-aware applications knowledge about underlying system technologies can be an impor-

tant source of information. Hence, a pure black-box model is not applicable anymore. Certain
features of the underlying system structure should be accessible to an application.

2.2.3.2 General Context Models

In this section we will try to identify different categories of context by exploring given classifications
found in the literature. The focus thereby lies on classifications which are helpful for computer-based
mechanisms.

As one of the first coarse characterizations, Schilit et al. [SAW94], classify context along the
categories:

• where a user is;
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• who a user is with;

• what resources are nearby.

This characterization includes more than the location, as “other things are also mobile and chang-
ing.” However, this characterization basically is “flat” and unstructured. Other authors proposed
a hierarchical model of context, often using first level, second level, and so forth, context classi-
fications. One example for such a model can be found in Dey and Abowd [DA00] and Abowd
and Mynatt [AM00], where first-level context is classified by the questions who, what, where, and
when, pointing to next-level context, like the email address of a user. Along the same line of thought
Lieberman and Selker [LS00] define three distinct models of context, a user, task, and system model.
The first is a description of the user, the second a description of the goals and actions to achieve, and
the last a model of the system in which a device or application operates.

In the cooltown project [KBM+] another classification is used:

• People. The people abstraction has relationships to all context related to a user. This includes
people in space, other users, etc. In cooltown the first-level context data is a URL to the
so-called web presence of a user as the first-class context and pointer to next-level context.

• Places. Places represent the physical surrounding and is a portal to more context information
(cf. Things). Places also own a web presence, managed by a central place manager.

• Things. Any physical object that can be relevant to an application. Usually, things are associ-
ated to places and have a web presence, too.

A more object-oriented approach is found in Schmidt, et al. [SBG99] in order to develop a hierar-
chical feature space of context. They propose the following model:

• A context describes a situation and the environment a device or user is in.

• A context is identified by a unique name.

• For each context a set of features is relevant.

• For each relevant feature a range of values is determined (implicit or explicit) by the context.

At top level they place context related to human factors in the widest sense, and context related
to the physical environment. Based on these categories they distinguish them further into three
subcategories each (user, social environment, task; and conditions, infrastructure, and location, re-
spectively). Those are then used as a basis and general structure for context. Additional context is
assigned to one of those six basic categories.

Dix, et al [DRD+00], pick up a similar approach and state the role of relationships for context,
as a common denominator for classes of context. They distinguish between infrastructure, system,
domain, and physical context as the different categories (cf. Table 2.1). Being similar to the classifi-
cations mentioned before, Dix, et al., heavily emphazise the importance of location as an “indexing
device” from which to infer the overall context and influencing all other context categories. They
state that the very idea of mobility alone demands an understanding of location as concept. Fur-
thermore, it might be used to be exploited as a means for a global understanding of the system.
The importance of location as a rich source of information is an agreed-on issue in research on
context-aware computing, e.g., [AAH+97; DCME01].
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context relationship with Issues
infrastructure network bandwidth, and re-

liability, display resolution
variability of service, user
awareness of service, live-
ness of data

system other devices, applications,
and users

distributed applications,
pace of feedback and
feedthrough, emergent
behaviour

domain application domain, style of
use, identification of users

situated interactions, per-
sonalization, task and work
studies, privacy

physical physical nature of devices,
environment, location

nature of mobility, location
dependent information, use
of environmental sensors

Table 2.1: Categories of Context in Dix, et al.

REQUIREMENT 2.2.4 Location as first class concept
Because of the outstanding richness of location as concept, we require that location should be a first
class concept in the specification and implementation of context-aware applications.

2.2.3.3 Programming Models for Context-aware applications

The definitions of context, as introduced above, show that in theory every piece of information may
possibly contribute to the execution of context-aware applications. However, due to the nature of mo-
bile, context-sensitive applications, applications have to be specified separately and independently
from a specific system setting. An application that should be useful in changing environments can-
not make explicit assumptions about the environment it operates in. This constitutes the need for
adaptive behavior on the application level. Direct access and control over resources in the envi-
ronment usually is not feasible or at least hard to implement. In an environment where multiple
separate applications want access to the same information, producers should be decoupled from the
actual consumers of data. This measure introduces the necessary anonymization of producers and
consumers. Sometimes this is done for security reasons, but more often to make resources sharable
among a large number of clients. Thereby, data is produced independently of knowledge about the
consumer, therefore adding flexibility to the system.

Unfortunately, from the application’s point of view, the problem of data aquisition becomes im-
portant. An application can hardly make concrete assumptions about the actual instance of a data
source. This includes the acquision frequency and time, the mode of disemmination of data items,
and what syntax and semantics the data exhibits. Consequently, a programming model for context-
dependent applications should distinguish between the specification at designtime and the behavior
at runtime (cf. also [BBG+00]).

Designtime. As direct control over resources and concrete data is not possible, a designer has
to resort to a data-oriented approach and specify an application in terms of reactive behavior. At
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Figure 2.5: Requirements for infrastructure support

design time the general behavior of an application is described as tasks or goals to reach. For an
application it is necessary to react to what happened, rather than how this information was acquired
in the first place. We require the specification thus to be on a high level of semantics. For instance,
a “conference room” application has to react to the presence of people attending a conference, in-
dependently of whether this information was acquired by a video-camera, an RFID tag reader, or an
IR-badge. In this respect, we require a reasonable separation of goal-oriented specification and the
actual instantiation at runtime.

Runtime. At runtime, the semantic specification and reactive behavior of an application, as pro-
posed above, must be implemented through data-acquisition and aggregation of data from available
resources in the surrounding. Therefore, monitoring and distribution of events must be supported
by the environment and appropriate means must be provided for applications to filter and aggre-
gate information suitable for direct input as contextual information at runtime. Obviously, part of
this functionality can be externalised and should be located in the surrounding infrastructure for
efficiency and flexibility.

Usually, the definition of programming models is problem-centric and “ad-hoc”. Therefore, Chap-
ter 8 will tackle the problem of modeling applications in more detail and provides a state pattern
oriented approach to the specification and implementation of context-sensitive applications.

2.2.4 Infrastructure Support for Pervasive Environments

In the previous section we have already described some of the requirements on an infrastructure for
pervasive systems. Figure 2.5 summarizes these requirements we want to focus on in the course
of this thesis. Thus, this section is devoted to an analysis of requirements from the viewpoint of
infrastructural support. The goal is to identify areas of middleware support where “traditional”
infrastructure for distributed systems has to be extended for use in the nomadic computing model.
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2.2.4.1 General Problem Statement

In static distributed settings, a middleware usually deals with fixed devices and rich computational
resources. For networking one assumes permanent connections and a static context, i.e., the overall
settings and relationships between the participants of the system are changing only slowly. Natu-
rally, the rationale for the deployment of middleware is to mask the unwanted aspects of distribution
of computation and act transparently. The ultimate goal for a middleware to achieve in such settings
is to appear as perfect black box: it is used via well-known and well-defined interfaces and trans-
parently hides all internals from the application layer. A “virtual single processor” model thereby
is extended to the distributed case. However, given the strong guarantees above, i.e., static environ-
ments and reliable networking, the model of a black box is a valid approach. Even complete parts of
the application logic can permanently be relocated into the middleware.

Although existing middleware, like transaction-oriented, message-oriented, or object-oriented
middleware (cf., e.g., [Emm00; Ber96]), is successfully deployed in static environments, it is likely
to fail in mobile settings. In a nomadic computing system, transparency of the infrastructure and
its distribution is only one aspect and not even always wanted. As we have shown above, explicit
awareness of the environment is a rich source for adaptive behavior and can be exploited to various
degrees for the benefit of an application or a user. To support nomadic, mobile systems we have to
“open-up” the black box. Moreover, most of the guarantees given for static distributed systems are
unlikely in mobile environments, as we shall show below.

In [Gei01] Geihs states that the requirements for infrastructure support “changed dramatically
since the era in which early middleware developers worked in environments dominated by locally
connected Unix workstations.”

2.2.4.2 Characterization of Infrastructure in Static Environments

A useful general definition for middleware or infrastructure is taken from [HL01]: “An infrastructure
is a well-established, pervasive, reliable, and publicly accessable set of technologies that act as
foundation for other systems.”

For the definition of middleware services, we extend the definition given in [Ber96]:

DEFINITION 2.2.1 Middleware Services. A middleware service is a general purpose service that
sits between platforms and applications. Platform means some computational architecture, i.e., pro-
cessor and operating system. A middleware service is defined by the APIs and protocols it supports
and services a large class of applications.

In distributed, non-mobile systems, middleware usually is characterized by:

• Fixed devices, e.g., servers with rich resources for heavy workloads and desktop PCs with
sufficient resources as clients, following an implicit client/server paradigm.

• Permanent connectivity, with high bandwidth and reliable connections. Communication usu-
ally is done synchroneously and tightly coupled, e.g., by Remote Procedure Calls [Sun88;
Gro97] or the more recent object-oriented variation of Sun’s Remote Method Invocation [Mic97].

• Static context, where the overall system evolution is slow, middleware can therefore implement
application knowledge.

• Transparency, i.e., aspects of distribution and functionality are hidden in the infrastructure
(black box model). Interaction is solely defined by the interfaces and protocols supported.
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2.2.4.3 Requirements for the Infrastructure Support in Mobile and Pervasive Systems

The first observation on infrastructure for mobile and pervasive systems is that mobility support is
an inherent requirement. But, mobility breaks many assumptions cultivated delicately and made
implicit in the design of middleware for static environments and their applications. Where tradi-
tional middleware tries to hide characteristics of the environment from an application, the very same
information might be useful for a mobile application.

Many viable assumptions for a static system only hold to a certain extent. Therefore, the deter-
minism of the overall system is restricted. To give an example, one distinctive characteristic in dis-
tributed system design is to make certain assumptions about failure modes. But, many failure modes
of static systems are modes of normal operation in mobile systems. For instance, wireless network-
ing naturally introduces slow or unreliable network links and battery-driven devices are switched off
regularly to save energy. Both examples introduce change and unpredictability for communication.
An infrastructure for nomadic environments should provide mechanisms to bridge such erratic be-
havior of clients. One possible solution is to introduce asynchronous communication as underlying
communication paradigm. Thereby, we weaken the assumption of synchronous communication that
sender and recipient have to be available at the same time.

After this short introduction and problem overview, we will detail the problems involved and move
along the requirements as shown in Figure 2.5.

Mobility. For traditional middleware the provision of complete transparency of the underlying
technology and the surrounding environment is the ultimate goal to achieve. Where traditional mid-
dleware simply hides mobility and change from an application, two distinct modes of operation are
needed in mobile settings: transparency and awareness of mobility.

The infrastructure we envision must operate in highly dynamic environments where client mobility
is the norm. Clients move around and appear or disappear as they come into or leave the reach of the
current context. Support for such forms of nomadic computing environments is mandatory.

However, not all applications are explicitly targeted towards the use in mobile scenarios. For
example, so-called “legacy applications”, like the famous “stock ticker”, are not necessarily aware
of mobility when run on a mobile device. Here, we want the infrastructure to provide transparency
of location and mobility. The infrastructure should handle the details of mobility-related issues, like
bridging phases of disconnectedness [ZF03]. On the other hand, applications might want to take
advantage of some sort of awareness, like device- and environment awareness [CEM01] or location-
awareness. In Capra et al. [CEM01], device awareness is relative to the information available on
a device, and environment awareness is relative to the environment in which computation takes
place, respectively. The most prominent example for environment awareness is context-sensitivity
in applications. Yau and Karim [YKW+02] define the task for a “middleware-oriented approach” as
“striking a balance between awareness and transparency to the application.”

REQUIREMENT 2.2.5 Transparency vs. Awareness
A middleware should support transparency as well as awareness of mobility at the same time.

Dynamics, adaptivity and reactive behavior. By definition, any infrastructure should be
extensible, must cope with evolution, and should provide means for openess. Although these require-
ments were the core reason for building middleware in the first place, they gain more importance in
mobile and pervasive settings where the overall setting is highly dynamic and bindings between
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clients and services are volatile and casual at most. In pervasive settings flexibility as an answer to
high dynamics is of outstanding importance.

Another issue is the inherent heterogeneity of mobile environments. Applications cannot expect to
have a uniform hardware or service platform to rely on. The task to locate, associate, and coordinate
activities of entities on-the-fly needs support by an intermediary infrastructure. Additionally, the
description of functionality should be independent from the actual technology found in a certain
environment in order to separate the semantics of functionality from the actual implementation and
the technology applied [DCEF02; HL01]. This provides means for evolution and extensibility. For
example, consider an application bound to a single location model and sensing technology. When
the technology changes over time, and therefore possibly the location model, the application might
be rendered useless. In such situations, a middleware providing for abstractions from the technology
used is beneficial.

As a requirement, we can state:

REQUIREMENT 2.2.6 Extensibility and Flexibility
Middleware must be usable as intermediary between applications and environments in terms of

extensibility and flexibility.

Adaptation [KF02; YK03] is the second prime requirement agreed on in the literature and a direct
concern identified above in Section 2.2.3.

Applications that are mobility-aware and context-sensitive need support for adaptation to a new
situation in a new environment. Be it as “flexibility to integrate new sources” [DCEF02], “obtaining
and discovery of information” [HL01], “abstraction of context acquisition” [YK03], “programming
for change”[GDH+01], or “task dynamism” [BB02], support for various different tasks is needed.
Another form of adaptation obviously is coping with fluctuations of resources, or more general,
“dynamically varying resource supply” [Gei01]. Hence, we require

REQUIREMENT 2.2.7 Adaptation
The infrastruture has to offer means for the adaptation of applications to new environments.

An important implication of the above requirement is that the whole procedure of application
development must be adapted to match the need for adaptive behavior on the application level.
Middleware support therefore includes the “implementation” of adaptive behavior at runtime. Be-
sides the efficient delivery of notifications about changes, mechanisms at runtime are needed to
complement the programming model used for the specification of applications at designtime. How-
ever, applications are specified in a reactive, process-oriented fashion, i.e., in terms of (simplified)
“whenever < x > occurs, do < y >”. The underlying data-model of the nomadic system should
reflect such specifications, where the “what”, i.e., the actual data item, is more important than the
“who” has produced the data. This data-centric view is shared by, e.g., Kindberg and Fox [KF02].
Consequently, the specification of data-queries should be data- and event-oriented.

Decoupling in space and time. For static distributed systems the request/reply paradigm
has been the predominant programming paradigm. As we have shown, in the nomadic computing
model many assumptions have to be redefined and, consequently, other programming models than
blocking, synchronous pull-based interaction is needed. For a detailed discussion on this issue refer
to [FMB01].
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The main reason why the synchronous request/reply paradigm is not sufficient anymore, is the un-
derlying assumption that: (i) client and server are “known” to each other, i.e., addressable directly,
and (ii) are available for communication at the same time. In other words, synchronous communica-
tion needs tight coupling in space and time to function properly.

As already mentioned above such conditions are hard to maintain in mobile environments with
fluctuating resources, e.g., in wireless sensor networks [RKM02]. Devices might be powered off to
save battery or are unreachable due to a link breakdown. The infrastructure in this respect has to
serve as the intermediary between producers of data and consumers and provide decoupling in space
and time.

Dix et al. [DRD+00] observe that connectivity is better characterized as “intermittent connectiv-
ity”, rather than “intermittent dis-connectivity,” resulting in the need for asynchronous and decoupled
communication. The same argumentation is pursuited by Kindberg and Fox [KF02], who argue that
disconnection is no fault, but at most a transient failure. Therefore, any system has to be built ro-
bust enough to cope with “routine failures”, such as a powered-off device that is not available. In
Dix et al. [DRD+00], it is argued that a middleware has to facilitate the distributed handling of
the “event phenomena”, i.e., communication is inherently event driven, like when communicating
state-changes. As another positive result of decoupling sender and receiver of data, Hong and Lan-
day [HL01] argue that sensors, services, and devices, as participants of the global system can be
changed independently, dynamically and at runtime, thereby contributing to the capability to adapt
to evolving systems.

Winograd supports the need for decoupled operation in the field of context management. The
underlying assumption is the higher the grade of decomposition of a system, the greater is the need
for decoupled operation (cf. also [Win01]). He illustrates this by examining three common “middle-
ware” abstractions for pervasive systems: widgets, networked services, and blackboards.

• Widgets. The notion of widgets is tightly bound to the work of Dey, et al., [SDA99; DSA01] on
the Context Toolkit. This approach originally stems from the development of user interfaces
where widgets hide the specific details of some hardware device driver and present a unified
interface. The widget model grew from a tradition of tight-coupling and single-manager con-
trol [Win01]. Only recently was a layer of abstraction introduced, the so-called discoverer, that
allows for a slightly more decoupled mode of operation, where relationships between entities
can be set-up at runtime, thus building a bridge to the networked service model. However, the
underlying interaction paradigm of the Context Toolkit is based on the client/server paradigm.
For example, sensor widgets act as context servers and applications that request data from
widgets are context clients.

• Networked services. Networked services are systems centered around a service paradigm.
Clients have to find the location of a certain service through pre-configuration or a discovery
process, like it is used in Jini [Sun99b], and then set up a transient or permanent connection to
this service. However, compared to the rather static setting of the widget model, components
expose a greater level of independence. An example for such an architecture is presented in
[HL01].

• Blackboard. Blackboards, as they are proposed in [Win01; FJHW00], use a paradigm of a cen-
tralized blackboard, realized through a tuple space, through which producers and consumers
of data coordinate their interaction in a de-coupled and data-centric fashion. The authors as-
sess this mode of interaction as being more suitable for pervasive systems than the others
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characterized above. On the other hand, they neglect the inherent negative properties of such
a centralized model, like limited scalability.

Using a data-centric and decoupled infrastructure model obviously provides the greatest free-
dom for interoperation of the various components building up a system. Another communica-
tion paradigm providing for asynchronous and decoupled communication is the publish/subscribe
paradigm. In the context of pervasive computing it is exploited to some extent, e.g., in the Nexus
project [NM01; Til02] and the Portolano project [EHAB99; GDL +01]. We will analyze the suitabil-
ity of the publish/subscribe paradigm in greater detail in Chapter 3 of this thesis.

As a summary of the discussion above we introduce the next global requirement:

REQUIREMENT 2.2.8 Decoupling in Space and Time
Inherently, large-scale mobile and pervasive systems require support for decoupled and asynchronous
interaction and communication in space and time.

Scalability. Given the sheer number of sensors, services, and devices envisioned to comprise the
future of ubiquitous computing, inherent scalability is an important issue for ubiquitous computing
middleware. Infrastructures need to work for large numbers of “everything” [BB02], as the dis-
tinction between computing device and common physical artifact is diminishing (cf. Sect 2.2 and
[KF02]). Hence, the scalability of a system is related to the ability of serving larger numbers of
mobile devices in an efficient way [MCE02].

In Kindberg and Fox [KF02] a “boundary principle” is introduced. Scalability is a concern of two
levels: (i) within a single boundary, i.e., along with the number of participants within a domain, and
(ii) across boundaries, i.e., the federation of a number of such smaller systems into a larger system
where interaction takes place across each system’s boundary.

REQUIREMENT 2.2.9 Scalability
A middleware must inherently be built for scalability.

Support for small devices. In accordance to our own analysis in Section 2.2.2.2, the ex-
tensive support of small devices is a requirement widely accepted for a pervasive environment.
While [KF02] talk of heterogeneity of devices, especially in embedded systems and the therefore
increased need to provide a uniform layer of abstraction, [BB02] take into account the resource
constraints heterogenous devices might have and require middleware to provide additional help. In
[LS00] the authors explicitly state the problem of devices which are easily overwhelmed with the
sensory data available and thus the demand to have some pre-filtering of data elsewhere. Even more
extensive support is advocated by [HL01], they postulate that as much as possible of the necessary
processing is performed by the infrastructure rather than on a device. Another issue, although ob-
vious at first sight, is that for the support of resource limited devices a common communication
platform is favorable. Communicating devices then at least can rely on a set of conventions for inter-
operability. This becomes increasingly important in the face of a growing number of heterogeneous
platforms and data formats [GDH+01; GB03; KB01; KBM+02].

In Section 2.2.2.2 we discussed some of the above issues from the viewpoint of devices. There
we identified the general need for middleware support. Thus, complementary to Requirement 2.2.1,
we state:
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REQUIREMENT 2.2.10 Support for Devices
A middleware should offer means to provide assistance to devices. This includes computational

resources as well as transparency of heterogeneity.

Finally, complementary to the requirement above we include the following requirement.

Simplicity Winograd remarked that “the key bottleneck is the human mind” [Win01]. Any system
that requires a complex and thorough understanding of its internals by system builders in order to use
its facilities is likely to fail. The time needed to achieve the necessary level of sophistication to master
such a system appropriately is usually too long. Hence, like the World Wide Web demonstrates, a
principle of “keep it simple” usually is more successful than other more heavyweight approaches.
The HTML and HTTP protocols are simple, yet sufficient to achieve the same goals as other more
powerful formating systems and communication protocols preceeding them. Thus, simplicity is a
key to a successfully deployable system. Interestingly, this point of view is the very basis for the
cooltown project [KB01; KBM+02]. The cooltown infrastructure relies completely on HTTP
and XML/HTML as transport protocol and data format, respectively.

REQUIREMENT 2.2.11 Simplicity
The interface between the infrastructure and its applications should be following the rule of “keep

it simple.”

2.3 Summary
In this chapter we have motivated the challenges intrinsic in the new field of pervasive computing sys-
tems. We started by introducing definitions of pervasive and ubiquitous computing and highlighted
important characteristics different from distributed systems. For example, different assumptions are
necessary about available quality of service or that clients are attached to the network permanently.
Then, we analyzed the impact of the new semantics of highly dynamic pervasive systems on the de-
sign of hardware, applications, and middleware. As a result many assumptions valid for distributed
systems have to be revised and extended in order to match the requirements found in mobile envi-
ronments.

Based on our own observations and a thourough review of related literature, we introduced sev-
eral taxonomies, such as a classification of device mobility, the forms of possible support from the
infrastructure, and the different categories of context commonly in use. These are then leveraged for
the identification and formulation of a number of key requirements that must be considered when
defining infrastructure support for pervasive environments. These requirements, like support for mo-
bility, support for context-awareness, extensibility, and scalability serve as the basis for the design
and assessment of the solutions developed in the remainder of this thesis.

Overall, this chapter lays important foundations, defines central concepts, and introduces central
requirements, on which the findings presented in later chapters are based.

������������
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3 Publish/Subscribe Systems
The hard and stiff breaks,

the supple prevails

Tao Te Ching

3.1 Introduction
The last chapter was dedicated to the introduction of pervasive and ubiquitous computing. But, be-
fore we can dive into the technical details, we have to lay the foundations of the underlying publish/
subscribe system we use as a starting point. Then, we compare this basis with the requirements iden-
tified in Chapter 2 in order to identify the necessary course of action and the potential for extensions.

Thus, the goals of this chapter are threefold: (i) it builds up the necessary foundations for under-
standing the publish/subscribe paradigm, (ii) it introduces the distributed notification service RE-
BECA and most importantly, contrast its basic properties with the requirements we identified in the
last chapter, and (iii) it gives an extensive review and analysis of relevant related work.

Consequently, the structure of this chapter is reflecting these goals. In Section 3.2, we start our
discussion by describing the basic properties of event-driven publish/subscribe systems and the pos-
sible variations of filters and notification routing that exist in this field. The subsequent Section 3.3
introduces REBECA, the implementation of a distributed publish/subscribe notification service this
thesis is based on. Section 3.4 clearly identifies the functionality missing from the basic REBECA

model to be suitable for mobile, pervasive computing by comparing it to requirements defined in the
previous chapter. Finally, Section 3.5 presents, discusses, and analyzes related work from the fields
of event-based systems, communication paradigms and pervasive environments.

3.2 Publish/Subscribe Systems
A publish/subscribe system minimally consists of the following entities: producers and subscribers
as interacting components, events and notifications as means of communication between producers
and consumers, subscriptions as a standing request and indication of interest in certain notifications,
and the event notification service as mediator between producers and consumers of notifications.
The notification service thereby is responsible for guaranteeing the delivery of events to interested
parties according to the subscriptions issued by subscribers (see Figure 3.1). Usually, the notification
service itself is a subsystem of a larger system and specialized on message delivery and routing.

3.2.1 Events and Notifications
The term event is tied to a happing of interest which is observable. In general, any happening can be
an event. This may be a happening in the physical world as well as something inside a completely
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Description
Event Observation of a concrete happening
Notification Reification and representation of an event for pro-

cessing. A single event can result in a multitude
of notifications

Message Data container for transmitting notifications
through the system

Table 3.1: Events, notifications, messages

virtual world of a computer system. For instance, the detection of a person in a room can be conveyed
to interested listeners (a security application or an “event log”). Other examples include recurring
events, like a timer event, or a change of a datum in a database triggering some actions. Events as
such can model arbitrary happenings of interest on all levels of a system, from low-level hardware
events (“interrupts”) up to business-level events in eCommerce applications or enterprise resource
planning (ERP) systems [Luc02].

The reification of an event in a publish/subscribe system is a notification. It represents the data
describing the observed happening. A notification is created by the observer of the event. The
content of a notification usually is application-dependent and may just indicate the plain occurrence,
but it can also carry additional information describing the circumstances of the event. For example,
in an active badge system, e.g., [BBHM95], events include the detected ID of the badge and the time
of observation whenever a user is detected by a sensor for location tracking.

Please note that we cannot assume that an observation is reported only by a single event. Depen-
dent on many factors the same observation might lead to multiple notifications. The notifications
may carry different amounts of information supporting different views of the happening for dif-
ferent application domains. It may be subject to transformation or aggregation in complex event
processing (CEP) systems, e.g., [Luc02] (cf. also Chapter 8). Or it may rely on different data
models for representing event data. The most common data models are name-value pairs [CRW01],
objects [BBHM95; EGD01], or semi-structured data [MF01; AF00], i.e., XML.

On the transport level described here, notifications are forwarded by messages, which basically
are containers for data on the network level. They carry data between the endpoints of the underlying
communication mechanism. The discussion above is summarized in Table 3.1.

3.2.2 Publishers and Subscribers

The clients of an event-based system act as producers and/or consumers of notifications. Producers
emit notifications whenever an event occurs. A producer does not necessarily have to publish every
single event. In general, producers are components that are self-contained. Hence, the course of
action taken after an event’s occurance is up to the internal computation done within the producer.
For instance, in some cases events are aggregated and after a sufficient number of events are collected
a new notification is generated (cf. also Chapter 8).

Whenever a notification is generated the producer “simply” publishes it into the notification ser-
vice. The producer is not aware of the (potential) receipients of its notifications. This mode of
decoupling in space is one of the major advantages of publish/subscribe systems. After publish-
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Figure 3.1: Event-based interaction

ing a notification the notification service is responsible for distributing notifications reliably to any
subscriber that issued a matching subscription.

On the other end of the communication relationship we place consumers or subscribers. They
issue a standing request for certain notifications. Once they receive such notifications via the noti-
fication service, they react to them, accordingly. They, too, are oblivious to the issuer of the noti-
fication. Thus, interaction is inherently data-driven. Not knowing the actual communication peer,
they issue a description of the data they want to receive. This description is called a subscription.
Different classes of subscriptions are introduced in the next subsection. It must be noted that a com-
ponent can act both, as consumer and also as producer of notifications. No exclusive separation of
roles is assumed. In terms of interfaces the subscription is the input interface to a component, i.e.,
a description of the data a component is able to process. Complementary, a producer may issue
advertisements, a means to define an output interface of a component. We define advertisements in
the next subsection.

Throughout the course of this thesis we assume no other communication paradigm than publish/
subscribe to be in use, unless explicitly stated otherwise. A detailed discussion about the rela-
tion of publish/subscribe to other communication paradigms, such as request/reply, can be found
in [FMG03].

3.2.3 Subscriptions and Filters

A subscription describes and represents the interest for a certain set of notifications. Consumers
register their interest by submitting subscriptions to the notification service, which evaluates the
subscriptions on behalf of the consumers. The intended semantics is to filter out all unwanted in-
formation and only let information pass that exactly matches a subscription. Thus, subscriptions
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are commonly implemented as filters in the notification service. In particular, filters constitute an
evaluation function that tests “incoming” notifications. Thereby, the function’s range is restricted to
boolean values, i.e., either a notification matches a subscription (true) or not (false).

In general, a subscription function may specify more constraints on message delivery than a pure
filter function on a message’s content. It also might include meta-data. This can be exploited for the
specification of additional data influencing the delivery decision. For example, classes of notification
can be selected based on their security credentials [BEP+03] or timing information to access past
notifications [CFH+03]. In this thesis we make heavy use of this possibility and extend the notion
of subscriptions and notifications to context-dependent subscriptions and notifications in Chapter 4.

Not necessarily part of a publish/subscribe system, but possibly helpful are advertisements. They
complement subscriptions: where subscriptions state an interest for certain information, advertise-
ments announce the kind of information a producer is able to produce. This complementary nature
usually is exploited to optimize message routing in the infrastructure because the notification service
“knows” what data can be expected from which producer and set up the network appropriately.

3.2.3.1 Filter Models

Obviously, the expressiveness of a subscription is dependent on the specification language used. In
distributed notification services, essentially five filter models are distinguished: channels, subjects,
types, content-based, and concept-based.

Channels. Channels are the simplest form of subscribing to sets of notifications. In the channel-
based model, a producer has to select a named channel into which a notification is then published.
For selecting certain notifications the client wants to receive, it only can select a channel. Any infor-
mation published on this channel is delivered to the client; independent of the concrete interest of the
client. An example of this approach is the CORBA Event Service [Obj00]; the CORBA Notification
Service [Obj02] also relies on channels but additionally offers filters on a notification’s content.

Subject-based addressing. Subject-based addressing uses string matching for notification
selection [OPSS93]. Every notification is part of a hierarchy of subjects. I.e., every notification
is annotated with a character string, describing the position relative to the hierarchy this data item
belongs to. For example, an application might publish some data related to Honey under the sub-
ject “ ��� !������ "��� #���� #����� ��� ���� ����� !����”. However, another (cor-
rect) view might be constituted by publishing the same data under the branch:
“ ��� !������ "��� #���� ����� #����� ��� ���� !����”.

Each level “down” in the hierarchy describes a finer granularity of notifications and thereby a
smaller subset of all notifications in the system. The closer to the root node, the more general the
selection criteria gets.

Type-based selection. Type-based selection uses similar path expressions and sub-type inclu-
sion tests to select notifications [BBMS98; EGD01]. With multiple inheritance, the subject tree is
extended to type lattices that allows for different rooted paths to the same node. Often, type checking
is complemented with content-based filters to improve selectivity.

Content-based filtering. Content-based filtering is the most general scheme of notification se-
lection [CRW99; Müh01]. Where other approaches use distinct addressing schemes for notification
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Description
���	���$N% Publishes event observations into the event sys-

tem.
���������$Sub% Subscribes to certain information.
�����������$Sub% Unsubscribes to certain information.
����&�$N% Notifies a client about the arrival of a notification

N matching a previously issued subscription Sub

Table 3.2: The publish/subscribe interface of a event notification service

selection (e.g., strings for subject specification), content-based addressing uses the complete content
of a message as possible selection criteria. Boolean expressions evaluate the whole content of notifi-
cations, where the data model of the notifications and the expressiveness of the predicates determine
the filter selectivity. Available solutions range from template matching [CDF01], simple compar-
isons [CRW01] or extensible filter expressions [MF01] on name-value pairs, to XPath expressions
on XML [AF00] and arbitrary programs and mobile code [DMDP03].

Concept-based filtering. Concept-based filtering [Cil02; CBB03] is another general scheme
of notification selection and an extension to content-based filtering. It is especially useful in envi-
ronments with heterogeneous data sources where the semantics of data in the system is not defined
clearly. There, filtering has to be done on a level where sematic translations have to be performed in
order to identify matching filter/notification pairs. Semantic translations usually employ meta-data
and are based on ontologies. Hence, concept-based filtering introduces much flexibility on the one
hand, but limits its applicability to domains where well-defined ontologies exist.

3.2.4 Event Notification Service

Because publish/subscribe is intended to decouple producers and consumers of information a media-
tor between the participants is needed. An event notification service, or notification service for short,
can implement this role. In event-based systems, as we explore them in this thesis, the notification
service alone is responsible for message delivery from publishers to subscribers. We have shown
this in Fig. 3.1.

The notification service offers a simple, yet sufficient, publish/subscribe interface for clients. Only
the publish, subscribe, unsubscribe, and notify calls are needed (cf. Table 3.2). Messages get into the
notification service by a publish call of an attached client and publisher 1. The notification service
then tests the newly arrived notification against all subscriptions which are currently active in the
system2. Active subscriptions are issued by some consumers, stating their interest by issuing a
standing request, using the subscribe call. The notification service then adds a new subscription to
the set of active subscriptions. Whenever the test of a notification against an active subscription is

1 Please note that a notification service is not necessarily a single process running on a single CPU. The notification service
assumed in this thesis is a distributed notification service and consists of a network of notification brokers. Cf. next
Section.

2 Again, this can mean that this step is done in a rather sophisticated and distributed fashion within a broker network.
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Figure 3.2: The router network of REBECA.

positive, the notification eventually is delivered to a subscriber. Delivery is done by calling the notify
call of a registered client.

Obviously, from the application’s point of view the mode of operation of a notification service is
opaque. Whether the functionality is centralized or distributed does not matter to an actual client.
The only way to access the classical model of a notification service is by its interface, thereby
effectively constituting the “black-box model” as introduced in Section 2.2.4.2.

3.3 The REBECA Model

This section describes the system model and the basic characteristics of the REBECA notification
service [FM00]. It implements the publish/subscribe interface as described in Section 3.2.4 above.

In Figure 3.2, we have depicted the underlying system layout of REBECA. Basically, the archi-
tecture is centered around a distributed network of communicating notification brokers. Because of
its distributed nature, REBECA is a representative example of a distributed notification service like
SIENA, JEDI, etc. REBECA supports different routing algorithms and data and filter models. A de-
tailed description of the general impact on message delivery compared to other notification services
is beyond the scope of this thesis and we refer to [Müh02; MFGB02] for a detailed description.

In this thesis REBECA is used as the underlying system model and testbed for the extensions
proposed in this thesis. However, we tried to specify any extension to the notification service in a
way that specific characteristics of REBECA are not necessarily part of the proposed approach in
order to foster versatility.
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3.3.1 System Model

For REBECA a concurrent program execution model of communicating processes is assumed [LL90].
Processes interact by message-passing over links between the processes concerned. Any link con-
nects a pair of processes. Message passing is asynchronously as defined, e.g., by Mattern [Mat89].
Hence, there is a certain time span between the send() and receive() operations on the link. Links
are assumed to exhibit no failures and to obey FIFO (first-in-first-out) ordering of messages. Con-
sequently, no messages are lost or corrupted due to link failures and messages are received in the
same order they were sent. The prime advantage of a nomadic computing system (Section 2.2.1)
here is that it is reasonable to assume that such guarantees are maintainable in the infrastructure. For
other settings initial solutions are available and might be applicable [CMPC03; IGE +03; Müh02].
However, the above mentioned properties are hard to maintain at the borders of the system where
clients are mobile. Solutions for maintaining FIFO ordering and avoidance of message loss in the
face of client mobility are presented in Chapter 5.

The underlying system model is build around a separate logical network of communicating pro-
cesses on top of a concrete network topology. We assume a set of processes located at some physical
node in a network and connected by point-to-point connections realized by the underlying network
technology. For instance, common internet technology easily meets those requirements. A set of
machines connected by the Internet host a set of processes which in turn are connected by TCP/IP
conncetions between the host machines. But, to facilitate extensibility and flexibility, the system
model is separated from the actual implementation. Therefore, other connection technologies are vi-
able choices, too. For instance a multicast-based solution might be used to improve communication
performance.

3.3.2 Architecture

Effectively, the role of the REBECA notification service is to decouple sender and recipient of no-
tification messages. This is done in a—for clients—transparent way. The perception of a client is
that of a single point of communication, i.e., the actual implementation of the publish/subscribe in-
terface and the internal architecture of the service are opaque. In particular, whether the notification
service is centralized or distributed is of no concern to the clients. Thus, the REBECA architecture
of a distributed network of interacting event brokers as shown in Figure 3.2 can be optimized in
various ways. We will exploit this particular advantage of a distributed architecture throughout the
next chapters of this thesis.

The communication topology of the overlay network of event brokers is described by an acyclic
graph (Fig. 3.2). Edges are point-to-point connections in the underlying network, for instance,
TCP/IP connections. The acyclic graph used is comparable to the single spanning tree approach
of multicast algorithms [DC90]. We are aware that a single tree is a potential bottleneck and bears
the potential to “act” as a single point of failure. Nevertheless, as we will show in later chapters, this
model can be of great use in the context of this thesis. Therefore, we believe that adhering to the
model of a single spanning tree is beneficial. Moreover, promising approaches for tackling problems
of scalability and redundancy are under way [CMPC03; TBF+03; PB02].

Please note that the original architecture of REBECA was designed for scalability and notifiaction
routing optimizations. In this thesis, we draw from such built-in capabilities where possible and
the underlying architecture is not changed. Our approach rather is to add extensions to this basic
model for proper support of mobile and pervasive applications and leave the basic functionality and
properties untouched where possible.
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For the structure of the broker network, besides the characteristic of being an overlay network,
three types of brokers can be distinguished: local, border, and inner brokers.

• Local broker. Local brokers act as access points to the infrastructure 3. Typically, they are part
of an application’s communication library and are loaded on application startup. Thus, they
cannot be handled as regular part of the broker network and they do not show in the actual
graph structure of the notification service. A local broker is connected to a single border
broker.

• Border broker. Border brokers are always the first “hop” into the network of brokers and
form the boundary of the routing network. In this thesis, border brokers play a major role for
supporting and hosting mobile clients, as well as maintaining caches and connections to their
local brokers.

• Inner broker. Inner brokers are connected to other inner or border brokers and do not maintain
any connections to clients.

All brokers support content-based filtering as introduced above in Section 3.2.3. In the distributed
case content-based filtering is also exploited as routing decision within the network. This is detailed
in the following section.

3.3.3 Content-Based Routing
Contrary to centralized systems, in distributed notification services notifications do not only have
to be matched against a single table of subscriptions but also are routed through the network to ap-
propriate local brokers for delivery to applications. In a centralized implementation matching of
notifications is reduced to efficient matching algorithms [YGM94; MFB02]. Although sufficient at
first sight, in large scale scenarios—and we consider pervasive computing environments as being
large scale (cf. Sect. 2.2.4)—a centralized solution poses the risk of being a bottleneck because of
the possibly intense consumption of bandwidth and computational resources. A distributed solution
therefore is more flexible and desirable. In such systems, the same operation, i.e., matching of noti-
fications and subscriptions must be done in every broker on the delivery path between producers and
consumers of data. On the other hand, this solution naturally distributes the tables of subscriptions
throughout the network and, in some relevant scanarios considered in this thesis, massively can draw
from message delivery localities if producer and consumer are “close-by” according to the metrics
of the network (cf. Chapter 7). Moreover, a result of our discussion of pervasive computing envi-
ronments in Section 2.2.4 is that interactions take place within a local boundary as well as across
boundaries4. Hence, within a boundary interaction can be realized using a centralized approach, but
across boundaries it is distributed.

The matching decision then is used to identify the appropriate next hop in the network towards
the consumer. Filter-based routing depends on routing tables that are maintained in the brokers and
contain filter-link pairs indicating in which direction matching notifications have to be forwarded.
Entries in the tables are updated by sending new and canceled subscriptions through the broker net-
work, adding or deleting (F, L)-pairs that contain the filter and the link from which it was received.
Every incoming notification is tested against the routing table entries to determine the set of links
with matching filters, omitting the link from which it was received. In a second step the notification

3 Please note that they are sometimes called access broker, as well.
4 Cf. the boundary principle on page 26.
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is forwarded to the respective neighbor brokers. If the incoming notifications of each link are routed
sequentially an end-to-end sender FIFO characteristic holds.

In the following we introduce the different routing strategies built into the REBECA notification
service. However, we consider the details of each strategy to be out of scope of this thesis and instead
refer to the appropriate literature, here especially to [Müh02]. To keep the solutions presented in our
work as versatile as possible, we assume simple routing as the most general routing strategy to
be used. Where appropriate, in later chapters, we discuss the impact on other routing strategies
qualitatively.

Different flavors of filter-based routing exist, which differ in their strategy to update the routing
tables.

• Simple routing. Simple routing assumes that each broker has global knowledge about all active
subscriptions. It minimizes the amount of notification traffic, but the routing table sizes in each
broker can grow significantly. Every (un-)subscription has to be processed by every broker re-
sulting in a comparable high filter forwarding overhead. In large-scale systems more advanced
routing algorithms may be applied to exploit commonalities among subscriptions in order to
reduce routing table sizes [MFGB02]. REBECA includes three of them [Müh02], identity-
based routing, covering-based routing [CRW01], and merging-based routing [MFB02].

• Identity routing. Identity-based routing avoids forwarding of subscriptions that match identical
sets of notifications.

• Covering-based routing. Covering-based routing avoids forwarding of those subscriptions that
only accept a subset of notifications matched by a formerly forwarded subscription. It might
be necessary to forward covered subscriptions along with an unsubscription if a subscription
is canceled.

• Merging-based routing. Merging-based routing extends covering further. Each broker can
merge existing routing entries to a more general subscription, i.e., the broker creates a new
cover for the merged routing entries replacing the old ones. Only the resulting merged filter has
to be forwarded to neighbor brokers, where it covers and replaces the existent original filters.
Merging can be either perfect or imperfect. Perfectly merged filters only accept notifications
that are accepted by at least one of its original filters. On the other hand, imperfectly merged
filters may accept more notifications than their original filters separately would. Imperfectly
merged routing table entries may lead to increased network traffic but allow for lazy updates,
hiding frequent reconfigurations in covered parts of the network.

Advertisements are an additional mechanism to optimize subscription forwarding. Subscriptions
are only forwarded into those subnets of the overlay network where a producer has issued an over-
lapping advertisement. Whenever a new advertisement is discovered, overlapping subscriptions are
forwarded appropriately. Similarly, if an advertisement is revoked, it is forwarded, and subscrip-
tions that can no longer be serviced are dropped. Advertisements can be combined with all routing
algorithms discussed above.

3.4 Missing Functionality
The preceding sections have introduced the basis on which we want to build extensions to facilitate
mobile and context-aware applications. In this section, we therefore focus on the shortcoming of
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the current model and architecture of event notification services in the light of the requirements we
definined in Section 2.2.4.

Due to the inherent properties of notification services, some requirements are already met, some
are at least partly covered. For example, loose coupling is one of the most basic characteristics of
publish/subscribe. Hence, the choice of relying on the data-driven, asynchronous publish/subscribe
paradigm is already justified. But, on the other hand, not all characteristics of pervasive environments
have been given thought to. In particular, the basic architecture described above does not have
built-in support for mobility and location-awareness. The prime requirements we have identified in
Section 2.2.4!

Therefore, in the remainder of this chapter we discuss the basic issues involved when adding
mobility support and location-awareness to a publish/subscribe infrastructure. Then, we sketch the
impact on the architecture of a publish/subscribe infrastructure supporting both. Later in this thesis,
this leads to Chapter 5, detailing the necessary extensions to the basic publish/subscribe model for
“classical” mobility support. Consequently, Chapter 6 and Chapter 7 detail necessary extensions for
location-awareness in the infrastructure, besides other things.

3.4.1 Mobility

In Section 2.2.4 in Requirement 2.2.5 on Page 23, we identified the need for mobility support to make
a publish/subscribe infrastructure usable in mobile and pervasive settings. There, we stated the need
for two orthogonal forms of mobility support: transparency and awareness of mobility at the same
time. Some scenarios require the former, some the latter and some both types of support. For instance
a so-called legacy application, like a stock quote monitoring application, is not aware of the mobile
client it is running on. Moreover, the notifications received usually have no relation to the current
location. Like other solutions for network transparency, e.g., mobile IP [Joh95], the actual details
are hidden in the network layer. Here, the network layer is the notification service. Thus, we need to
provide an extension for the basic publish/subscribe notification service that facilitates transparency
for the client. The same mechanism comes into play whenever a mobility-aware application wants
to delegate mobility aspects of its operation into the infrastructure. This may be the case for forms of
context-sensitivity that relies on aspects other than the current location. For example, notifications
should only be delivered in a certain time frame, there the context is time, independent from the
current location of a client.

Obviously, a naïve solution for transparency is to rely on a sequence of subscribe-unsubscribe-
subscribe operations for the same information. As we show later in this thesis this unavoidably
leads to unwanted message loss. Therefore, in Chapter 5 we introduce an extension to the stan-
dard REBECA notification service that handles relocations of clients transparently without losing the
guarantees REBECA offers for the non-mobile use case.

Mobility-awareness on the other hand is a necessary option for every context-sensitive application.
In order to meet Requirement 2.2.7, i.e., the support and fostering of adaptive behavior, we have to
ensure that an interested client is able to access information about its current whereabout. Most con-
temporary implementations of the publish/subscribe paradigm do not support mobility-awareness.
Awareness is a feature of the applications. On an application domain-specific level, i.e., when con-
sumer and producers share the same common knowledge about their environment (and are able to
provide this information at all), it is possible to process such information on the shared common
ground. Information about location then is encoded in the actual content of a message. The draw-
back of such solution is obvious: a roaming client always is forced to update its own position by
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issuing a new subscription with its new position, together with an unsubscription at its old position.
Besides possibly violating our requirement of simplicity, such position handling has a significant
impact on the computational resources of a small device. Moreover, the routing network needs time
to propagate information about a new position through the network. This leads to a perceivable slow
down of message delivery. In a fine grained location model, for instance a floorplan, where location
updates occur often, this behavior significantly impedes the usability of an application.

More desirable is to put mechanisms in place where the client can specify a location marker, act-
ing as a placeholder for the client’s current position. Whenever the location is updated, either by
a client or an external tracking- or location service, the subscription of this client is adapted auto-
matically. Without going into details, this imposes some interesting challenges which are addressed
in Chapter 6 and partly in Chapter 7. To implement mechanisms for automated location-awareness,
we have to separate the location model in use from the actual application domain it is used in. For
efficient routing and matching of filters carrying a location specification, we need to make location
a first-class concept of the routing network. To avoid issues of heterogenous location models and
semantic transformations, as a common basis, we introduce a reference location model for the use in
the infrastructure in Chapter 4.

3.4.2 Dynamics, Adaptivity, and Reactive Behavior
Our analysis of requirements in Chapter 2 identified a number of requirements addressing the need
for a flexible and extensible infrastructure in order to handle the inherent dynamics of pervasive
systems. By design, a notification service and the data-driven publish/subscribe paradigm are well
suited to meet the requirements stated. In Chapter 8 we discuss this in the light of the development
of context-sensitive applications. However, some extensions to the basic model presented in this
chapter are needed to properly address the challenges (see also Section 3.4.5 and Section 3.4.6
below).

3.4.3 Scalability
The choice of a distributed notification service as message routing infrastructure, to some extent,
is motivated by its potential to host a large number of clients, i.e., its inherent scalability. One
of the characteristics of a pervasive environment is its scale in space as well as in the number of
producers and consumers of information (Requirement 2.2.9 on Page 26). Therefore, a distributed
notification service already accomodates scalability. But the mechanisms presented in this thesis,
here in particular the algorithms we discuss in Chapter 5 and Chapter 7, have been designed to draw
from message delivery localities in the broker network, promoting scalability even further.

3.4.4 Decoupling in space and time
Another important issue and the main focus of Chapter 7 is to provide means to meet Require-
ment 2.2.8: decoupling of clients of the publish/subscribe notification service in space and time.
The publish/subscribe paradigm, by design, already decouples sender and receipient of data in space
and—to a certain extent—in time. Decoupling in time is only possible for the time it takes for the
network to propagate a notification through the network. Then a message is “buffered” in the net-
work. After this, the notification is gone if not special facilities for buffering notifications are put
in place to provide for longer lasting persistence. In the general case, “past” notifications are not
accessible for clients that, for instance, were switched-on “just a fraction of a second” too late to
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observe an important event. Unfortunately, in a nomadic system setting this is a common situation.
Clients are assumed to roam freely and to frequently connect to different new environments. Any
such time the scenario above can happen. This might be intolerable for clients, which have to rely
on a series of notifications for adaptation to a new environment or simply for bootstrapping and
reaching a consistent state of operation. As the commnication is asynchronous and event-driven, a
client cannot assume that the needed information is (re-)published in due time. Here, special buffers,
providing at least for a speed-up of the bootstrapping process can be of great help. Chapter 7 details
our solution to the problem stated above.

3.4.5 Application support

The concern of Chapter 8 is the definition of a conceptual framework with which it is possible to
define control-driven applications in the face of the purely data-driven publish/subscribe paradigm
(e.g., [PA98; PLM02]). Often, finite state machines (FSM) are used to specify behavior on a high
semantic level. Such FSMs are then used to model state changes and the reaction to events happening
outside the application. In Chapter 8 we show how this approach can be applied to the development
of context-aware applications and how we can exploit the characteristics of the notification service
to support this approach. Thereby, we show how the publish/subscribe paradigm can be exploited
and extended to provide reactive behavior (Requirement 2.2.2).

3.4.6 Support for small devices and simplicity

By allowing the specification of filters, as introduced in Section 3.2.3, together with the easy-to-use
interface to the notification service, we already meet the Requirements 2.2.10 (support for small
devices) and 2.2.11 (simplicity) to a large extent. Filters significantly can reduce unwanted traffic a
client otherwise might receive. The simple-to-use interface makes it easy to integrate heterogenous
devices into environments using the publish/subscribe paradigm.

In addition, throughout the remainder of this thesis we make sure that every extension made to the
notification service is in accordance with the requirements above. Especially in Chapter 6, we pro-
pose an extension to the basic notification service that tries to minimize the number of unnecessary
notifications sent to a client compared to network flooding; the only alternative solution guarantee-
ing the same semantics. The proposed solution thereby avoids the danger of network congestions
on a low-bandwidth wireless connection and overloading the computational resources of a resource-
limited device. Moreover, in Chapter 8, we allow clients to place aggregators and interpretors (see
Section 8.3.3) in the network, thereby relocating a significant amount of traffic and computation into
the infrastructure.

3.5 Related work

In this section we introduce and analyze work related to the work presented in this thesis. We
structure the discussion that follows along two main topics: first, we introduce common related work
from the field of publish/subscribe notification services and coordination models. Then, related work
from the field of pervasive computing is analyzed. We restrict our discussion to work with a focus
on middleware and event-based communication.
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3.5.1 Notification Services

A considerable amount of notification services exist and many concrete systems have been de-
signed and implemented, both in industry and academia. In this subsection we give a representative
overview over existing solutions for asynchronous, event-driven communication.

3.5.1.1 CORBA Notification Service

The CORBA Notification Service is an API specification as part of the Common Object Services
of the CORBA plattform [Obj02] and supersedes the previous event service specification [Obj00].
It relies on channel-based addressing (Section 3.2.3.1), i.e., publishers have to get a reference to
a specific channel and send their event data as notifications into this channel. Consumers, on the
other hand, select a channel and additionally specify a content-based filter for client-side filtering
on data published on this channel. Visibility of data is restricted to the channel it is sent on. An
additional problem inherited from the channel-based approach is the structure of channel names
and, in particular, the relationship between channels. Part of the semantics of the data sent using
a channel already is “encoded” in the channel’s name. This introduces the problem of “channel
discovery,” which seriously restricts its general usability in dynamic and mobile scenarios, where
heterogenity has to be considered. Producers and consumers of notification data have to deal with
channels explicitly, thereby adding to the complexity of applications. Another issue is the scalability
of a centralized notification service.

However, for environments where one can make assumptions about the clients of the infrastructure
and the applications needed, the CORBA notification service is a popular choice. We will discuss
one such system examplarily in the context of GAIA (Section 3.5.4.2 on Page 49).

3.5.1.2 Java Message Service

The Java Message Service (JMS) is an API specification being part of the Java2 Enterprise Edition
(J2EE) [Sun02a; Sun03]. Different to the CORBA solution, JMS can be used without the enterprise
object platform it is a part of. The JMS uses so called topic-based subscriptions, which stands
for message grouping according to abstract topics plus content-based filtering on a set of header
fields and properties, similar to CORBA channels. Thereby, JMS provides an API layer that can
be put on top of many industry messaging and publish/subscribe products, including the Corba
Notification Service. The semantics of topics is left to be defined by the actual topic provider, called
JMS provider. The same applies to the topic’s syntax and management. Topics can be grouped in
various ways, the most prominent hierachy, probably, is based on a Java packages-like structure, i.e.,
a dotted notation: '�����(����)�����)�����. JMS providers can choose for what position in a
subject hierarchy their notifications are for. This can be a leafe node, as well as a complete subject
subtree.

As JMS basically is an API only, it is extremely versatile and flexible. Therefore, JMS is probably
becoming the most popular messaging API. Many projects, including industrial, academic, and open
source, are implementing the JMS API. A partial implementation of the publish/subscribe part of
JMS is part of the REBECA notification service, thereby, combining the potential of JMS with the
advantages of distributed notification routing.
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3.5.1.3 Gryphon

The Gryphon project’s goal at IBM Research [IBM01a] was the development of an industrial-
strength, reliable, content-based event broker. Later Gryphon was integrated into IBM’s WebSphere
suite as the IBM WebSphere MQ Event Broker [Cor03]. This indicates that Gryphon is a mature and
successfully deployed event service. It provides a redundant, topic- and content-based multi-broker
publish/subscribe service. It includes an efficient event matching engine, a scalable routing algo-
rithm, and security features. Naturally, mobility and context-awareness are not addressed explicitly.

Gryphon is based on an information flow model for messaging [BKS +99]. The exchange of
information between producers and consumers is specified in a so called information flow graph
(IFG). Information flows can be influenced by (a) filtering, (b) stateless transformations, and (c)
stateful transformations, i.e., aggregation. Therefore, Gryphon may be a viable choice for the model
proposed in Chapter 8.

Three types of brokers are distinguished: publisher-hosting broker (PHB), consumer-hosting bro-
ker (CHB), and intermediate broker (IB). A PHB hosts a number of publishers entering data into
the IFG. Complementary, a CHB hosts consumers of data, and an intermediate broker has neither
publishers, nor consumers attached. A drawback, however, can be seen in the static deployment of
the broker network.

Interesting in the context of Chapter 7, i.e., decoupling in time, is that a recent addition to Gryphon
added a durable subscriptions service [BZA03]. It added exactly once delivery semantics over peri-
ods of disconnectedness of a client. This means that the event stream is buffered and replayed upon
reconnection. Therefore, an event log is held at the PHB.

3.5.1.4 Research Prototypes

In this subsection we present a selection of research prototypes in the field of distributed publish/
subscribe notification services we consider to be relevant for the work presented in this thesis.

CEA. The Cambridge Event Architecture (CEA) [BBHM95; BMB+00] originated in the early 90s.
Its roots lie in the need to address asynchronous communication for sensor-rich applications. In the
beginning CEA was tightly integrated in the standard middleware CORBA. Middleware clients acting
as event producers or consumers were standard CORBA objects. An event producer registeres the
kind of events it produces with a name service, thereby effectively using an advertising mechanism.

In the standard synchronous middleware approach of CORBA, an event consumer directly registers
with the producer, after doing a lookup for the kind of notifications it is interested in. The producer
in turn, notifies all registered clients whenever an event occurs. Obviously, direct communication
introduces tight coupling, which is not desirable in general. To address this issue, CEA introduced
intermediaries, so called event mediators. They implement both, the producer and consumer inter-
faces, acting as buffer. The data model does not include general content-based publish/subscribe.
The design goal of CEA was to integrate with standard middleware. Therefore, events are strongly
typed objects. Initially, subscriptions were template-based for equality matching only. This was ex-
tended later to facilitate a more general predicate-based language with key/value pairs. Furthermore,
CEA supports composite event patterns [HBBM96].

Although event mediators can be federated or chained, they lack the content-based routing mech-
anisms of other systems. This seriously limits the scalability of the system as subscribers are forced
to know the producers of a certain event type. Particularly in mobile settings this can be seen as a
major drawback.



3.5 Related work 43

HERMES. HERMES [PB02; Pie04] is a very recent implementation of a distributed content-based
publish/subscribe system developed at the Computer Laboratory at the University of Cambridge.
HERMES follows a type- and attribute-based publish/subscribe model including type-checking of
events and event-type inheritance. For the use in more dynamic environments, HERMES uses a
peer-to-peer overlay network on top of a regular network infrastructure. This is comparable to the
concepts we started to explore in [TBF+03]. Routing algorithms are introduced that are implemeted
on top of a distributed hash table; the common data structure for peer-to-peer systems. The goal is
to achieve reduced routing state in the system and to achieve a certain degree of fault-tolerance with
the prospect of ad-hoc networking.

This core functionality of the distributed event notification service is augmented by three higher-
level services that address different requirements: congestion-control and recovery to foster scalabil-
ity and fault-tolerance, composite event detection for the detection of complex events, and security.

SIENA. SIENA [CRW01; CRW00] is a publish/subscribe event notification service. As REBECA,
it is implemented as distributed network of servers to achieve scalability for a large number of com-
municants and high volumes of notifications spread across a wide-area network. The underlying
system model is almost identical to the one we presented in Section 3.3.1 on Page 35. SIENA servers
act as access point (in REBECA called border brokers) and as store-and-forward network routers.
The access point routers offer clients the usual publish/subscribe interface to the distributed event
service. Additionally, publishers can use the access points for advertising, i.e., the publication of
information about the notification they are going to publish afterwards. Complementary, subscribers
use filters to express their interest in a certain kind of information.

The underlying notification data model is based on typed filters, i.e., a notification in the model is a
set of typed attributes. Each individual attribute consists of a triple (type, name, value), describing
the content the filter shall match. Noteworthy is that the type attribute belongs to a predefined set of
types available in the system.

The basic SIENA model, like the basic REBECA model, offers no explicit support for mobile
clients and context-aware applications. The mobility extensions of SIENA in [CIP02] are very similar
to the JEDI approach we describe below. Explicit sign-offs are required and stored notifications are
directly requested from the old location, too, resulting in possible message-loss or duplicates. We
discuss the drawbacks of such solutions in full detail in Section 5.5.2 on Page 92, in the light of our
own proposed algorithm.

In a recent technical report [CCW03] the authors describe a mobility extension to SIENA, based
on a general purpose support service for mobile applications as an orthogonal service to the event
service. The underlying idea is to use a client proxy that is designed “to reduce the loss or duplication
of information during the switch-over period.”

To the best of our knowledge, support for location-aware or context-aware applications is not built
into the routing infrastructure.

JEDI. The Java Event-Based Distributed Infrastructure (JEDI) [CDF01] is a Java-based implemen-
tation of a distributed content-based publish/subscribe system from the Politecnico di Milano. JEDI

is build on the notion of active objects, acting as publishers and subscribers that exchange messages
through an event dispatcher, which routes events. The event dispatcher is a logically centralized
component that can be implemented by a distributed set of dispatching servers connected in an
acyclic topology, i.e., a dispatcher tree. Routing is performed according to a hierarchical subscrip-
tion strategy. Subscription propagate upwards in the tree and state about them is maintained in and
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by the event dispatchers. Events are basically handled identically to subscriptions but are also prop-
agated “down” along a branch with a matching subscription. Advertisements, to restrict notification
forwarding, are not part of the JEDI model. There is no single event dissemination tree for all sub-
scriptions but instead a core-based tree [BFC93; Bal97] is constructed dynamically. Therefore, it is
necessary to determine a group leader, called the core, which announces its existence via broadcast.
This introduces a rather complex protocol for event dispatchers to become part of a certain group.
Each event dispatcher has to have global knowledge about all available group leaders at all times.
On a request of an event dispatcher to become part of a certain group the group leader delegates the
request downwards to an appropriate dispatcher, that becomes parent of the new node in the tree.

JEDI offers support for mobility [CNP00; CD01] through the notion of a ����*�� and ����+�

operation. The basic idea is to have a client to detach from the infrastructure by explicitly sending
a ����*�� message, serializing its state, and reconnecting to a (possibly) different broker, where a
����+� message is sent. Messages received at the old broker’s location are requested directly by the
new broker the client is attached to. This, again, can lead to message loss and duplicates. Hence,
certain delivery guarentees can not be maintained. Additionally, it is not detailed what the effect
of movement on the publish/subscribe infrastructure is. Moreover, as with SIENA, the proposed
mechanism leads to unwanted message loss and/or duplicates. Finally, in mobile, wireless settings
the notion of an explicit ����*�� operation seems unrealistic in the face of sudden connection loss or
spontaneous switch-off of a device for some reason. Also, only mobility transparency is supported,
but not awareness.

Elvin. Elvin [SA97] is a notification service developed by the Distributed Systems Technology
Center in Australia. Originally, the intended use was focused on distributed systems monitoring.
Additions include a security framework, internationalisation, and pluggable transport protocols 5.
Content-based routing of events [SAB+00] has been added as well. Events are attribute/value pairs
with a predicate-based subscription language. A publisher can request information about consumers
of their published data. This feature can be exploited to stop notification production in the case
no consumer is attached to the event service. This reduces computation and unnessecary commu-
nication. More recent work includes investigation about the usability of Elvin in more dynamic
settings [SAS01].

3.5.2 Tuple Space based Middleware

The characteristics of mobile wireless systems favor decoupled operation and an opportunistic style
of communication. Synchronous communication as it is supported by many traditional middleware
systems must be replaced by asynchronous communication, e.g., to facilitate for disconnected op-
eration. One possible alternative solution to the event-based paradigm is the use of tuple spaces.
Although, initially not built for the use in mobile settings—the origin goes back to Linda [Gel85;
ACG86]—but as a communication language for concurrent programming, tuple spaces inherently
have many useful facilities for the use in mobile settings. However, as it is true for event systems,
traditional tuple spaces also have to go a long way to be really adapted to meet mobile systems’
requirements.

For instance, in Linda a tuple space is globally shared by all communicating processes. Memory
space is addressed associatively and acts as a repository of data structures for interprocess communi-

5 Although not further detailed above, REBECA implements so called ����������	
��s. They are meant as a plug-in
mechanism for various transport protocols.
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cation. The only data abstraction known are data-centric tuples. They are created and/or consumed
by processes. Tuples are anonymous, i.e., independent from the process that generated them. Their
selection is solely based on the data they represent. Only three different operations are originally
provided by a tuple space: '����, ��
�, and �
��6. The '���� primitive is used to add tuples to
a tuple space, ��
� and �
�� are used to read a copy of a tuple or to consume the original tuple
from the tuple space, respectively. While the former leaves the original in the tuple space for other
processes to read, the latter deletes the tuple from the space. Both operations are blocking, i.e., the
process waits for the generation of a tuple that matches the pattern provided by the ��
� or �
��
operation. In principle, this is enough to provide decoupling in space and time. Producer and con-
sumer of data do not necessarily have to be available at the same time. However, in mobile settings
many problems remain: how can the model of a globally shared data space be scaled to large settings
where the data space has to be distributed itself? How is consistency maintained? How can mobile
hosts access a tuple space without knowledge about the environment?

In the following we want to review a representative selection of tuple spaces that have been devised
also for mobile settings.

Lime. In Lime [MPR01], the shift from a fixed context to to a changing one is done via the dis-
tribution of tuple space functionality to a number of separate tuple spaces. Each tuple space is
permanently and exclusively associated with a mobile unit and is called interface tuple space (ITS).
The term mobile unit can refer either to a mobile agent, or to a mobile device. In the first case the
unit is mobile logically, in the second case it is mobile physically. However, in either case, the inter-
face tuple space is transferred with the code or device, thereby introducing the necessity to support
code mobility.

A mobile unit accesses a system using conventional tuple space primitives. The fundamental idea
is that each device uses the ITS as means to share data. Whenever mobile units meet, the ITS connect
to each other and every tuple contained in one of the ITSs is accessible by all other ITSs and hence
mobile units. Thereby, a transiently shared tuple space is generated. Upon arrival or departure of a
mobile unit the virtual “global” view of tuples is recomputed, called engagement and disengagement,
respectively, of tuple spaces.

Overall, mobility, in the sense as Lime defines it, is reduced to a view of data shared in the “global”
transient tuple space. This view may be beneficial for the development of applications but it may
also be too restrictive in domains where higher degrees of context-awareness are needed.

IBM TSpaces. TSpaces [WMLF98] is the IBM version of a tuple space. The design of TSpaces
reflects the goal to make TSpaces usable on a wide variety of platforms. It distinguishes three
important roles: client, server, and tuple space. The client basically is a rather simple class library
loadable into a client application on a device and, like the whole system, is written in Java. The
server is a configurable container, providing the environment for maintaining a set of tuple spaces.
This is different to other tuple spaces where a single tuple space is used. In a certain sense, tuple
spaces in TSpaces resemble channels or topics as known in event-based systems. The content and
semantics of each tuple space is meant to be conveyed by the name of a tuple space. Information
about all available tuple spaces is kept as tuples in a special tuple space called Galaxy.

A client which wants access to a certain tuple space must have the address of the server, as well as
the name of the tuple space in order to write to or read/take from a tuple space. This can be considered
a drawback of this model. However, on the server-side, TSpaces offer rather flexible and extensible

6 Please note that there does not exist a notification mechanism.
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mechanisms. From simple unstructured tuples, automated generation of “XML tuples” from XML
formatted documents, to transactional behavior the server can be configured to support a wide variety
of tuples. Moreover, like most contemporary tuple space solutions, TSpaces supports asynchronous
notifications and offers subscription mechanisms for non-blocking read/takes. However, the server
functionality is centralized and requires a larger amount of computational resources. Federation
and distribution of tuple spaces to several servers is not explicitly supported. Additionally, sudden
disconnection of clients is considered a permanent fault and results in removal of the client, thereby
limiting the usability in mobile settings without “third-party” support for catering to the mobility
issues.

JavaSpaces. JavaSpaces [Sun02b] is part of the Jini framework since its first introduction in
1999 [Sun99a]. Jini originally was targeted at small and mobile devices but ultimately failed to reach
this goal, due to the need to have a complete Java2 runtime environment on a device. However, some
efforts were made to circumvent this requirement [Sun01; ADH +99; AKZ99]. JavaSpaces itself is
built as a service in a Jini federation. It uses the underlying Jini framework for various functions:
service advertising [Sun99b], remote eventing [Sun99a], distributed transactions [Sun99c], and leas-
ing [Sun99a]. For a complete overview of Jini we refer to [Edw99].

In comparison to TSpaces, the most striking difference is that only a single tuple space is used.
But, on the other hand, in the Jini model of federated services, a set of different instances of Java-
Spaces can live in a single environment as separated services. Thereby, different views and special-
isations can be achieved. However, a client then is responsible by itself to find, select, and publish
information in all JavaSpaces it needs.

The operations offered are comparable to those offered by TSpaces. The usual '����, ��
�, and
�
�� operations are provided. Additional non-blocking variants are available, employing the under-
lying Jini Remote Events mechanism for peer to peer eventing based on Java RMI. Obviously, using
synchronous, tighly coupled communication for eventing is limiting the usability in mobile settings
seriously. Remarkable is the leasing mechanism. JavaSpaces uses time based garbage collection on
tuples in the tuple space. A '���� operation always returns a so called lease. A lease is a token
describing the time a tuple is guaranteed to be maintained by the tuple space. Before expiration a
producer (or some other entity) is responsible for the renewal of a lease. Otherwise, after expiration
of a lease, the garbage collector process is free to delete a tuple without further notice. Thereby, a
simple but effective means of garbage collection is established.

However, JavaSpaces considered as a whole is comparable to TSpaces. It has almost the same
strengths as well as weaknesses. In the most basic case it is cetralized, federation is not explicitly
supported, although possible, and disconnection can result in fault situations not desired. Moreover,
the impact on client resources is considerable and often makes the use in mobile settings impossi-
ble. This is true for two reasons: first, a complete Java2 environment is needed; and second, the
underlying Jini infrastructure makes heavily use of mobile code, i.e., a large set of classes has to be
downloaded, inspected, and instantiated at runtime on a device. This introduces requirements for
computational resources, as well as bandwidth, usually not met by resource-limited devices. On the
other hand, according to our own experience, JavaSpaces is probably the most flexible and stable
tuple space available.

L2imbo. L2imbo [DFWB98b; DFWB98a] is a tuple based infrastructure with the emphasis on
quality of service. It supports: multiple tuple spaces, tuple type hierachies, and quality of service
attributes, thereby emphasizing its main focus. Like TSpaces and Lime new tuple spaces can be
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created on the fly when needed, although L2imbo hereby relies on a central instance of a main tuple
space. This is somehow comparable to the “Galaxy” in TSpaces. The tuple spaces are implemented
in a distributed fashion such that each host holds its own replica of the tuple space. This allows for
disconnected operation but seriously impairs scalability. Tuples can be assigned quality of service
attributes, like a deadline, indicating the lifetime of a tuple in the space and comparable to the
leasing mechanism in JavaSpaces. Maintaining consistency and meeting certain QoS specifications
is left to a number of agents, responsible for monitoring the overall system, the creation of new tuple
spaces where needed, and the propagation of tuples between tuple spaces. L2imbo is probably the
most advanced system for the use in mobile settings, although explicit support for location- and/or
context-awareness is missing.

3.5.3 Multicast and Geocast

Multicast offers one-to-many communication that transmits a single message to potentially multiple
receivers. A thorough overview7 can be found in [WZ99]. Originally, multicast was incorporated
into network level protocols, in particular into the Internet Protocol [Dee89]. More recently, mul-
ticast is considered on the application level [hCRSZ02; RHKS01]. Deering and Cheriton [CD85]
provide a good introduction to multicast in the context of wide area networks (WAN). Multicast
concentrates on the efficient sending of messages to a specific group of receivers, the so called mul-
ticast groups. In IP multicast these groups are separate sets of receivers. Neither explicit relationship
between multicast groups are specified, nor does IP multicast provide means for such specifications.
Hence, structuring applications on the basis of multicast groups delegates the specification of rela-
tionships and their management on the applications. Also problematic is the namespace of multicast
groups: routing is performed on group identifiers alone. Semantic meaning of content which is
published and consumed by a group of multicast clients is either determined by the actual multicast
group or its position relative to a “subject tree,” as defined in Section 3.2.3. However, multicast
is sufficient for many application scenarios, although it often suffers from the lack of support and
availability of the Internet Multicast Backbone (MBONE). Nevertheless, for small to medium sized
networks under a single administrative domain, multicast can be sucessfully deployed. For instance,
REBECA uses multicast for discovery of peer routers based on the Java Naming and Directory Inter-
face (JNDI) [Inc01]. Another example is the Jini architecture, where the process of service discovery
and federation also is based on multicast groups [Sun99b].

Geocast [NI97; RFC2009] can be seen as a specialized form of multicast, where availabe posi-
tioning systems for mobile devices are used to determine the actual location for location-dependent
delivery of messages. Thereby, the underlying semantics for filtering and addressing is similar to
multicast. Hence, geocast can be classified as a special variant of multicast. In multicast, a message
is sent to a group of receivers. Either a receiver explicitly joins a certain multicast group or a group
is defined implicitly, e.g., through the geographic position of a mobile device. This is the exact
semantics of geocast: the implicit generation of multicast groups based on the location of mobile
clients and the target area of messages.

The geocast implementation presented in [NI97] distinguishes the following components:

Geocast clients. A geocast client usually is a software component, for instance a loadable soft-
ware library, running on a mobile device. Its responsibility is to send messages received from local
applications to a geocast router for forwarding.

7 At least for German-speaking readers.
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Geocast routers. Routers are responsible for the forwarding of messages from the sender to the
clients. Common message forwarding mechanisms are (i) geographic routing, (ii) the directory-
based approach, or (iii) the multicast-based approach. Approach (i) uses geographic information
directly for message forwarding, i.e., special routers compare the target area of the message and the
areas covered by sub-networks to decide where a message must be forwarded to. This approach
obviously requires a strong ordering of the network, together with specialized routers, because the
structure of the network has to correspond to the underlying physical layout. Approach (ii) is IP-
based in the sense that all (potential) receipients register with a directory service, i.e., their IP-
addresses together with the current location. The directory service then generates mappings between
geographic target areas of messages and the associated IP-addresses. Thereby, implicit multicast
groups are generated. However, the actual update process of moving objects in the directory remains
unclear. Approach (iii), finally, is based on a “traditional” multicasting approach. The physical
space is divided into multicast-addresses, i.e., some partition exists which makes a certain target
area for a geocast message addressable by a unique mulitcast-address. How such partitions can be
obtained and how an appropriate multicast address is determined in a dynamic environment remains
unclear, too. A proposed simplified solution for the determination of a target address is to replace
multicasting by broadcasting and client-side filtering.

Ideas for using geocast in the automotive sector are presented, e.g, in [MFE03; ME04]. Also,
STEAM [MC02], a middleware service designed for wireless local area networks using the ad-
hoc network model where there are no access points and system wide services, can be seen as an
implementation of geocast. Subscribers only consume events produced by geographically close-by
publishers. For this it relies on proximity-based group communication [MKCC01]. Another system
using geocast is Nexus which we will describe below in Section 3.5.4.3.

3.5.4 Selected Work from Pervasive Environments

Many research projects exist in the field of ubiquitous and pervasive computing. In this section we
want to restrict ourselves to those projects that we feel have a strong inclination towards infrastruc-
tures and middleware, as well as some background in the use of an event-driven communication
paradigm or event service.

3.5.4.1 CALAIS

CALAIS is a system architecture for the support of context-aware applications. In his Ph.D. the-
sis [Nel98], Nelson proposes an event-based model for the tracking, extraction, and management of
location- and context-information. The actual distribution of such information is based on a central-
ized CORBA event service. The system exploits the abstraction capabilities of the OMG interface
definition language in order to provide an abstraction layer from the actual sensor technology in
use. Each sensor is described in terms of a CORBA interface, its attributes, and event classes it can
produce. In a certain sense, type-based filtering is used, based on the interface of the sensor abstrac-
tion. The main drawback is that the CORBA event service provides a rich set of functionality on the
one hand, but clearly lacks support for small resource limited devices. Moreover, scalability issues
remain unclear under the assumption of a purely cetralized solution.
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Figure 3.3: Gaia architecture.

3.5.4.2 Gaia

The goal of the Gaia project at the University of Illinois at Urbana-Champaign [RHC +02] is to create
a complete meta-operating system for the use in pervasive computing environments. In [RHC +02]
the motivation for this project is described as “the lack of a suitable software infrastructure to assist
us in the development of applications for ubiquitous computing habitats or living spaces.” The focus
of Gaia therefore are so called Active Spaces, i.e., homes, offices, and meeting rooms enriched with
embedded “smart” artifacts. Gaia tries to bring the functionality of an operating system to physical
spaces, thus, it is also referred to as Gaia OS. Operating system functions, such as events, signals,
file system support, security, processes and their management should be supported by the overall
meta-operating system. Moreover, typical operating system functions are made “context-aware” and
many of the functions are tailored for Active Spaces. It provides services for location, context, and
events, and repositories with meta-information about the current active space.

The three major building blocks of Gaia are: the Gaia kernel, the Gaia application framework,
and the Gaia applications (Figure 3.3). This constitutes a distributed middleware infrastructure that
coordinates software entities and heterogeneous networked devices in a physical space. Gaia OS
is influenced by previous work on 2K [KCM+00; KSC+98] a reflective middleware [KCBC02]
operating system build on top of a traditional OS. The underlying communication infrastructure is
based on TAO [SLM98; KRL+00] and CORBA. Interesting in the context of this thesis is the event
manager service that is based on the CORBA event service. It is responsible for event distribution
in the active space. The addressing scheme is channel-based as introduced in Section 3.2.3. Each
channel has one or more producers and one or more consumers attached. The event manager service
itself is centralized and provides a single entry point to the event mechanism. Gaia OS mainly uses
the event mechanism for signaling purposes, like distribution of information about new services,
applications, people, errors, and component heartbeat. On the other hand, application or component
interaction is based on direct, RPC-like communication mechanisms.



3.5 Related work 50

Clients/

Applications

Augmented 

Area

Augmented Area 
Model

Information 

Spaces

Nexus

Copyright K. Rothermel
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3.5.4.3 Nexus

Nexus is a massive effort to create a “digital world model.” Information about real objects is em-
bedded into a larger virtual model of physical space. By connecting information about physical
artifacts and the surrounding environment with additional “purely” virtual information, novel appli-
cations and services are expected to emerge. The whole project is centered around augmented area
models [HKL+99b]. An augmented area model is the virtual representation of the physical space
together with embedded information about clients, services, and additional information. The aug-
mented area model allows Nexus-based applications to benefit from the users’ position as well as
the relationships to other objects around them.

Every change observed by the Nexus platform is automatically propagated to the model and might
trigger actions in the augmented area model. In this respect, asynchronous communication and
notifications are necessary. As a complete description of Nexus clearly is beyond the scope of this
thesis, we refer to the literature for an overview (e.g., [HKL+99a; NM01]).

In [BR02] the authors describe the idea of spatial events, distinguishing between basic events
and complex events, i.e., composite events. They decribe the most basic components of an event
specification language. Details about the actual set-up and integration into the Nexus platform are
omitted in the literature.

Related to the model we introduce in Chapter 4 is the work presented in [DR03] and partially in
Bauer et al [BBR02]. There, the authors describe a location model for the use together with geocast
as introduced in Section 3.5.3 above. The location model the authors propose clearly is related
to other models, like [Leo98; KEG93; EF91; JS02]. The proposed model uses a hybrid model
of location specification. Geometric as well as symbolic location specification is allowed. The
model presented allows for a fine-grained specification of target areas as introduced in the geocast
communication paradigm. However, location specification is done in XML and basically follows
its predecessors in using, for instance, hierarchical symbolic location descriptors for a target area,
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like  �� ���	�� ���	����� , &	���- '���- ����./. As common in hybrid location models,
conversion functions for translating symbolic into geometric locations, and vice versa, are provided.

3.5.4.4 SOLAR

The SOLAR [CK01; CK02b; CK02a] research prototype was developed at Dartmouth College. Its
main focus is to provide abstractions for the support of adaptive ubiquitous computing applica-
tions. They identify the key challenges as being context collection, aggregation, and dissemination.
Applications must be allowed to flexibly define their own operations and their composition from
“lower-level” operations. The SOLAR model is based on a directed acyclic graph (DAG) of opera-
tors. The underlying assumption is that context-driven applications adapt to context changes in an
event-driven fashion. Therefore, valid input to applications can be characterized as an event on a
high semantic level. Such input must be generated out of low-level information as it is provided by
sensors. The sensors in their model are called event sources. Each event source produces an event
stream over time, which is considered unidirectional. An event consumer subscribes to such event
streams. The main contribution is the definition of a DAG consisting of operators. Operators are
subscribers to data and consume one or more event streams and produce new events based on the
actual incoming data. Operators, obviously, can be recursivly connected to form an operator graph
structure. Operators are deterministic functions comparable to event compositors as introduced by
CEA, HERMES, or in [LCB99; Cil02]. Subscriptions are type-based, name/value-based, or an XML
document. However, it remains unclear how these different types of subscriptions can be made com-
parable, or whether they represent separate concerns of a system. This is especially true for the lack
of a common location model for use within the infrastructure. Although the SOLAR architecture
defines the notion of location-aware subscriptions, apparently they are not exploited for efficient
matching of events.

3.5.4.5 one.world

one.world [GDH+01; Gri02] is a system architecture for pervasive applications developed at the
University of Washington. The main focus is a complete integrated framework going beyond the
scope of this thesis, namely to provide a whole suite of services for application development and
deployment in a pervasive computing environment. The overall architecture is shown in Figure 3.5.
The underlying assumption for their work is that comtemporary systems try to hide distribution
and rely on technologies such as RPC [RFC1057] or distributed file systems [LS90] and therefore
failures are hard to anticipate. Such systems try to extend single node programming mechanisms,
tight coupling, and encapsulation of data and functionality to the pervasive computing case. Conse-
quently, applications on top of this functionality tend to be structured like single node applications
and therefore are likely to fail.

The one.world project approaches these issues by making distribution explicitly accessible to
applications. Basically, the system tries to cover three main requirements: exposure of contextual
changes, ad hoc composition, and sharing of information as a default, especially in collaborative
scenarios. In our oppinion the work presented has much in common with the goals and the design
of Jini [Sun99a].

However, as it can be seen in Figure 3.5, notification delivery, asynchronous communication, and
filtering is only one of the services specified. Thus, the focus lies elsewhere, e.g., service discovery
and data management (for instance checkpointing or information sharing via tuples).
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Figure 3.5: Overview of the one.world architecture

3.6 Summary
In this chapter we laid the foundations of publish/subscribe for readers not familiar with this impor-
tant paradigm. As a second step, we introduced REBECA: an implementation of the aforementioned
publish/subscribe mechanisms. REBECA is a distributed publish/subscribe notification service and
serves as basis for all extensions we present in the remainder of the thesis. Extending REBECA is
necessary because its original focus is on scalability, manageability, and the exploration of efficient
routing mechanisms. Therefore, important aspects of mobile systems are not considered in its ar-
chitecture and need to be integrated as done in this thesis. We analyzed REBECA and compared it
against the requirements for infrastructure support we identified in Section 2.2.4. We clearly stated
where REBECA, and the publish/subscribe paradigm in general, fall short for effective support of
mobile clients in pervasive environments. The main shortcomings are (i) proper support for mobil-
ity, (ii) context-awareness as eligible system property for roaming clients together with mechanisms
to delegate certain aspects of context-handling to the infrastructure, and (iii) adaptation of the pub-
lish/subscribe model to decouple producers and consumers in time and space efficiently. Provision of
solutions to address these shortcomings is the main focus of the remainder of this thesis. Finally, in
this chapter, we introduced related work and extensively analyzed projects relevant for this thesis. In
order to structure the discussion more clearly, we subdivided it into relevant work done in the field of
publish/subscribe systems and work relevant in the context of pervasive computing infrastructures.

������������



4 Foundations of Context and Location
for Publish/Subscribe Middleware

When we try to pick out anything, by itself,
we find it hitched to everything else in the universe.

John Muir, naturalist and conservationist (1838-1914)

4.1 Introduction
In Section 2.2.3 we gave the broad view on context and the different categorizations of context-
awareness as they are common in literature. Context-awareness often is used synonymously for
changing the behavior of applications corresponding to changes in the surrounding.

In this chapter we argue that context-awareness is also an issue for a publish/subscribe notification
service. We specify a model of context in a way that it is applicable for the operation of such
middleware. In order to do so, we have to concretize the broad view of context as introduced in
Chapter 2. The focus of our discussion about context-awareness is aiming towards an operational
definition as one central foundation to be used in the remainder of this thesis.

Central to the discussion is the role of location as a primary source for adaptive behavior of
applications. Therefore, we specify and then integrate a formal model of location as first-class
abstraction into the very core of the publish/subscribe notification service. The challenge here lies in
the nature of location specification and how it can be mapped to the model of content-based filtering
we assume as underlying filter model.

This chapter is structured as follows: after specifying what we understand as context for the use
in a notification service in Section 4.2, we introduce and discuss the design dimensions for location-
awareness as a first-class object within a publish/subscribe infrastructure in Section 4.3. The realiza-
tion of the concepts introduced in the following sections is the central topic of Chapter 6. Throughout
the remainder of this chapter we will analyze the requirements for a proper specification of a loca-
tion model. Then, we review common solutions as they are used in location-aware systems to clarify
requirements stemming from the application level. Finally, based on the previous discussion we
propose a specific location model to extend the underlying REBECA notification service.

4.2 Modeling Context for Publish/Subscribe
Infrastructures

As we have shown in Section 2.2.3.1 and especially in our discussion about categories of context
definitions in Section 2.2.3.2, rather diverse views of this topic are common in the related literature.
They range from simple enumerative or declarative definitions over somehow operational definitions
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Figure 4.1: General model: data-driven sensors, a nomadic, event-driven infrastructure, and applica-
tions on mobile devices

to concrete categorizations of the term context. But context often is considered to be a concern unique
to applications.

For this thesis, we take a different point of view and define context as a concern of a distributed
publish/subscribe notification service. Its basic defining property therefore has to be whether context
can be exploited to optimize or at least influence the operation of the publish/subscribe infrastruc-
ture. This is legitimate because, in a general sense, context is any information contributing to the
adaptation of applications. Obviously, the same argument shall be applied to the intermediary in-
frastructure.

Hence, our definition of context is:

DEFINITION 4.2.1 Context.
Any information that can be exploited to influence the operation of the distributed publish/subscribe

notification service is considered to be context.

In other words, whenever information can be used to influence the routing decision made in the
infrastructure, it is considered context. This is particularly benefitial whenever the routing decision
is optimized by exploiting context information.
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4.2.1 Categorization of Context Information
Context is an umbrella term for any data about the surrounding as a whole. Context information, on
the other hand, describes the particular building blocks context is comprised of on a finer-grained
level. In this thesis, basic context information is assumed as being data that is collected or computed
based on raw-data from sensors, building up the application’s context (or situation) as defined above.

Two kinds of context information can be distinguished: (i) application-specific and (ii) system-
specific context. Application-specific context uses semantics intrinsic to a specific application (do-
main). System-specific context exploits data that is defined or generated outside of a concrete ap-
plication. Usually, such context information is usable within the notification service for routing
optimizations.

Application domain-specific context. Any context information which is interpretable only
by a concrete application or application domain is categorized as application domain-specific con-
text. For example, assume that a temperature sensor periodically generates temperature readings,
like “((temperature,25)&&(unit,C))”, and injects them into the system using the publish/subscribe
infrastructure. On the one hand, a matching application may use such information, based on the
implicit sematics used. On the other hand, such information could only be used for routing decisions
if an appropriate ontology is deployed and used in every router within the routing network. Other
examples include computed context descriptions, like “health-state: OK” (cf. Chapter 8.3). They
refer to some application’s state and thus cannot serve as general context information.

System-specific context. Complementary, system-specific context is any information which is
exploitable as additional source of information about the current system’s setting. This is information
which is valuable outside the content of a message. The semantics of the information must be made
explicit and is agreed on by every part of the broker network. Examples for such information are:
location, time of day, identifiers, credentials, or, in general, any other system property.

However, for any context information being usable as system-specific context, the following prop-
erties must hold:

1. An explicit and well-defined data model exists.

2. A matching filter model exists, i.e., a mapping from data model to a boolean value must be
possible at all times (see also the following item).

3. An explicit metric on the data model is available to ensure comparability of any two instances
of the data model. This ensures the completeness of the previous item.

Although trivial at first sight, the previous enumeration is crucial for the definition of context for
a publish/subscribe notification service. The first item simply states the need for a well-defined and
explicit data model. A common agreement on the semantics of the data model must exist. Item
2. ensures that the routing decision can be computed. This includes the implicit requirement to do
so efficiently. Item 3. makes explicit that only well-defined context models are eligible as system-
specific context.

One striking example for eligible context is location, as we will show throughout the next sec-
tions. Not well-suited for the use in routing decision are “fuzzy” terms, like situation. Here, the
open questions are (for example): how are two situations comparable? What is their metric? What
distinguishes one situation from another?
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Before defining location as context information, next, we incorporate the notion of context into
our definitions of filters and notifications.

Context-dependent filters and notifications. For completeness, we define:

DEFINITION 4.2.2 Context-dependent Filters.
A context-dependent filter is defined as an extension to the standard data and filter model of a

notification service. In addition to the standard query specification a filter offers means to specify
metadata, possibly influencing the routing decision.

DEFINITION 4.2.3 Context-dependent Notifications.
A context-dependent notification is defined as an extension to the standard notification model of

a notification service. In addition to the standard content transported, metadata can be specified,
concretising the context of a data item.

4.3 Modeling Location for Publish/Subscribe
Infrastructures

The focus on mobile users and mobile devices naturally makes location an important issue to tackle.
For example, in Location-based Services (LBS) information is related to the actual position the LBS
currently is deployed. Here, typical examples include: local weather forecasts, traffic conditions for
the current area, or restaurant menus in the vicinity. Applications might want to issue subscriptions
in a way that the subscription’s relevancy is restricted to a certain area in the real world. This is what
we have introduced as location-dependency. Relative to a certain area a data item is valid, and hence
is forwarded, or is invalid and therefore discarded.

As a guiding example we take a subscription to a “Free Parking Spaces” service. On the applica-
tion level the goal is to be informed about available parking spaces in the vicinity. For the sake of
simplicity, we formulate this as an informal subscription: “subscribe to Free Parking Spaces Service
and around a radius of 0.5 kilometers around my current position”

This subscription has two distinct parts: (a) an application- and domain-specific part, identify-
ing the application-dependent domain knowledge (“Free Parking Spaces Service”), and (b) a well-
known and well-defined description of the “range” in which this subscription should be valid. This
adheres to the definition of a context-dependent filter as introduced in the last section. Furthermore,
notifications matching this particular subscription also consist of two separated parts.

• Content. Following the standard model of REBECAwhich uses content-based addressing, the
whole content of a notification is eligible as matching criteria for subscriptions and notifica-
tion. The same semantics is maintained here. The issuer of a subscription expresses interest
in information concerning the shared knowledge about some application domain, e.g., the
knowledge about the status of parking spaces in the current area.

• Envelope. By delegating knowledge about the location into the envelope of a notification,
a separation of concerns is introduced. Therefore, consumers and producers can rely on a
well-defined interface to specify location information, while the infrastructure can use the
same model of location to optimize routing and relieve location-aware applications from (a)
redefining location models for each application separately and (b) receiving information not
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relevant for reaching the application’s goal by specification of validity constrains on notifica-
tion delivery.

4.3.1 Design Space of Location Models for Publish/Subscribe
When exploring the design space for a location model for publish/subscribe systems, the main chal-
lenges are:

• Finding a data model suitable to accommodate the intended use of “location” as an application
and infrastructural concept at the same time. Obviously, some models are quite natural for the
use in a specific application or application domain. For example, the use of floorplans is
intuitive for modeling indoor applications, but not applicable in outdoor scenarios. Hence,
from the middleware perspective, we are looking for a versatile model supporting a large
variety of applications.

• Operations defined on the data model are needed to facilitate location-awareness for applica-
tions and efficiently matching filters and notifications in the middleware at the same time. This
includes the specification of an appropriate definition- and query language for location-aware
subscriptions and notifications, respectively.

4.3.1.1 On Location and Space

In this thesis, we focus on publish/subscribe middleware that supports devices roaming in the phys-
ical space. To specify proper mechanisms for such support, we need a deeper understanding of
location and space. In general, the main distinction between “location” and “space” is that every
location is part of a larger space. This space might contain other entities, devices and users. From
an application’s perspective, the relationships between those are important. We distinguish 1:

• Location in space. A device always is located at a physical location within a certain space.

• Interaction. Spaces might contain more than one object. A device might want to interact with
other devices (e.g., sensors) or users.

• Reactive behavior. Devices are situated within a space and therefore are subject to changes,
triggered by influencing events from the space, or from other devices and users within it.

Essentially, while roaming devices are embedded into changing spaces and interact with the cur-
rent space or other entities in the same space mediated by the middleware deployed there (cf. Fig-
ure 2.3 on Page 12). This is the basic application of the nomadic system model.

Additionally, for the design and implementation of a publish/subscribe infrastructure for pervasive
systems it is important to understand the basic model of spatial interaction:

1. Location of a device.

2. Mobility through space.

3. Interaction with other entities in the same space.

4. Application-specific awareness of other devices.

1 The characterization presented here is inspired by a similar characterization in Dix et al [DRD+00].
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Unfortunately, built-in middleware support for the items above can only be realized to a certain
degree. We have to consider the actual movement of a device in space for efficient and complete
information delivery. Moreover, support for the interaction with changing partners and some means
to support context and location-awareness should be built into the middleware. However, support for
application-specific awareness naturally seems to be out of scope of a general purpose middleware
approach.

4.3.2 A Taxonomy of Location Models

In general, we can distinguish between two basic classes of location models:

• Geometric models.

• Symbolic models.

Some applications make use of the exact location of a device, where the location usually is pro-
vided as Cartesian coordinates, as they are provided, for example, by the Global Positioning System.
Those systems use a geometric model of space. For other applications, like tour guides or office
applications, the location is expressed in terms of a (hierarchical) topology, which is sufficient for
understanding the location of a device and its relationship to other entities. Usually, in such a system
location is expressed in terms of a unique canonical name in a well-structured namespace, mapping
a physical location to a unique name. Such symbolic representations of location are called symbolic
models. A prominent example for this use is the cooltown project, where location can be expressed
in terms of a URL, referencing to a web-page associated with a certain location.

In general, it is necessary to model not only the actual location of entities but also some of the
relationships between them. For example, common “questions” asked by context-aware applications
are:

(i) “Where am I?”,

(ii) “What else is nearby?”, and

(iii) “How should I behave in the light of (i) and (ii)?” (cf. [DRD +00]).

Here, we concentrate on a model for (i) and (ii) because (iii) is highly application-dependent and
therefore not a direct concern of a middleware solution. In practice, an application always accesses
“location” as a conceptional representation and not “directly” in the physical world. Hence, for the
specification of context and location, we need:

• A semantic model of space and location which offers a well-defined data-model.

• A computational model of space and location being part of the puplish/subscribe infrastructure
and serving as a basis for a well-defined filter-model within REBECA.

A filter model for a publish/subscribe middleware should make use of the semantic model for the
definition of relationships between space and location as foundation for the matching of filters and
notifications based on, e.g., containment or intersection.

Now, we will analyze geometric and symbolic models in the light of the requirements for suitable
data and filter models.
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Figure 4.2: Classification of location models

4.3.2.1 Geometric models

An intuitive model of location is the familiar (x,y,z)-coordinate model we know as a simple geomet-
ric model of space (cf. Fig.4.2(a) and [Leo98]). All geometric models have in common that they are
based on some reference coordinate systems. A location then can be expressed by a set of coordinate
tuples, describing a position relative to the reference coordinate system of choice. Interestingly, there
is no explicit distinction between location and located object in such models as everything is simply
a set of coordinate tuples. Hence, the main challenge in modeling location using a geometric model
lies in introducing an explicit destinction between location and located object, i.e., entities and the
space they are located in. An important step to make coordinates useful for location representation is
to define “location abstractions” or “location symbols” on top of the pure coordinates. The obvious
abstractions are boxes (2D or 3D) or more complex shapes which are modeled on top of coordinates.
Together with appropriate measurements of “nearness”, it is then feasible to differentiate between a
location of an object and the space it is contained in. The central advantages of geometric models
are their flexibility and versatility. Coordinate-based spatial models provide very flexible means to
access location information. Due to their simplicity a geometric model is easily implementable in
sensors and applications. An obvious disadvantage is the lack of structure and missing hierarchical
layering of location information, making system layout and design more complicated.

4.3.2.2 Symbolic Models

Symbolic models refer to locations by abstract symbols, although the most common case is to use
named locations in a human understandable way. The symbols are characters and names, like “Wil-
helminenstr. 7”, “Room C120”, “Andreas’ Office”, etc. The main characteristic of symbolic models
is that locations and located objects are represented by symbols that adhere to natural ordering crite-
ria, i.e., sets and located objects as members of sets, respectively. In the physical space this means,
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whenever a located object is member of a location set, it is physically within the range of this partic-
ular location, e.g., “(user::andreas) in (office::andreas)” might evalute to true whenever a uniquely
identifiable user named “Andreas” is in the office associated with the same user. Figure 4.4(b) shows
the classification of symbolic models as introduced by Leonhardt in [Leo98] and which is the ba-
sis of this section. The most basic models are simple symbolic models which may be constrained,
e.g., by not allowing spaces to overlap. Equally, the model of space and location might include a
partial ordering of location symbols based on the spacial inclusion of the underlying spaces. This
results in different (specialized) models of space and location, as we will explain later in this chap-
ter. In comparison to geometric models the prime advantage of symbolic models is that they mostly
are hierarchical, discrete, and well-structured, facilitating naming, adaptation, and scalability. On
the other hand, they are more complicated to handle and, most important, usually are subject to
application-dependent naming and semantics. Therefore, versatility is strongly limited. In general,
sensors and applications from different domains would have to rely on ontological translations for
interoperability which is not feasible at all times.

4.3.3 A Geometric Model of Space
The predominant (outdoor) positioning system today is the Global Positioning System (GPS) which
is based on the World Geodetic System (WGS84) [WGS84] reference system, i.e., longitude, lati-
tude, and altitude. The WGS84 adequately models location by itself such that we can concentrate on
structuring the flat space of (x, y, z) tuples with symbolic spaces on top of the coordinate abstraction.

With respect to the geometrical model we have to model two abstractions, location and a space.
Location is ideally modeled as a point or, as no positioning system is error-free, as uncertainty area
in which it is likely that the entity is contained. However, located entities are always contained in
a larger space. Therefore, it is important to model certain relationships between location, located
object and space, which can be handled uniformly by assigning “space”, i.e., a spatial extension, to
every located entity and space.

Once a data-model of location is established, we can introduce a computational model of location
where relationships between locations and spaces can be expressed, i.e., inclusion, overlap, etc.
These relationships then can be used to specify constraints for the delivery of notifications to specific
clients, based on location-dependent subscriptions issued (cf. Chapter 6). However, tests on spacial
constraints are non-trivial when we allow the use of complex shapes. Thus, we will weaken the
notion of location and space by introducing and using a location graph for the efficient matching of
filters and notifications within the infrastructure. This is discussed in Section 4.4.2.

Specification. The specification of location and located objects presented here is based on simi-
lar specifications found in the literature, especially in [Leo98].

For the sake of simplicity we constrain the three-dimensional notion of space to the two-dimensional
notion of area. The definitions presented here are easily extensible to the third dimension, which is
omitted here. We define:

DEFINITION 4.3.1 Area.
An Area is any geometrical object with a spatial extension.

Based on the this definition each location can be modeled as a small Area 2, which is in accor-
dance with a non-error free model of location measurement. Further, we can model the relationships

2 Please note that this also applies to a point.
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between locations based on Area. For the intended use as computational model being part of the
publish/subscribe middleware, we consider overlap and inclusion as primary relationships. Please
note that we model the operations to be decision functions: they directly map their input to a boolean
value. This way, they are directly implementable in the event broker network.

We specify:

DEFINITION 4.3.2 Geometric Location Model.

anyLoc : Area

contains : (Area, Area)→ Boolean

overlaps : (Area, Area)→ Boolean

∀a1, a2 ∈ Area : contains(a1, a2) = true

⇒ contains(a2, a1) = false (asymmetry) (4.1)

∀a1, a2, a3 ∈ Area : contains(a1, a2) = true ∧ contains(a2, a3) = true

⇒ contains(a1, a3) = true (transitivity) (4.2)

∀a ∈ Area : contains(anyLoc, a) = true (4.3)

∀a1, a2 ∈ Area : overlaps(a1, a2) = true

⇔ (∃a3 ∈ Area :
contains(a1, a3) = true ∧ contains(a2, a3) = true) (4.4)

Whereby anyLoc is a special function, serving as a “wildcard” for the specification of location
information and evaluates to true for any location specified. The inclusion relationship is transitive
and asymmetric.

Complementary to anyLoc, we specify an additional placeholder for the specification of the cur-
rent location of a located object.

DEFINITION 4.3.3 Geometric Location Reference.

myLoc : ObjectId→ Area

myLoc returns the location of an entity using a system specific identifier.

4.3.4 Design Space of Symbolic Models
In the relevant literature, especially in [Leo98], three models of symbolic locations are distinguished
(cf. also 4.4(b)):

• The basic cell model;

• The more advanced zones model;

• The most flexible location domain model.

As the cell- and the zones model are of lesser importance for this thesis, for those models, we
will give only a very brief characterization before we introduce the location domain model in more
detail.
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4.3.4.1 The Cell Model

The cell model is characterized by an intermix of different location sensing technology, leading to a
significant lack of structure within the location model. Each location sensing technology is defining
its own location model in terms of a well-defined geographical area, e.g., a room, a bluetooth cell,
a wireless LAN cell, etc. As those areas are not exclusively assigned to a single location system, a
located-object might be detected by several different location systems, leading to the loss of bijective
mappings between locations and located objects. However, each of such cells is a separate symbolic
location in this model. They are allowed to overlap, but an inclusion relationship among cells is not
part of this model.

4.3.4.2 The Zone Model

The zone model is an extension to the cell model and is mainly characterized by the structure added
compared to the former model. The main distinction from the cell model is that, given the same
intermix of sensing technology (i.e. overlapping cells in the real world), the “logical” map is free
from overlapping cells (cf. Figure 4.5(c) on Page 67). This is done by superimposing new zones
on the actual cells. The intersections between cells then are represented by new zones, making the
model free of overlapping. The zone model can be classified as exclusive symbolic model, as any
located-object can only be part of a single zone.

Please note that exclusive symbolic models in general are of great interest as within an exclusive
symbolic location space the movement of a single object can be modeled in terms of graphs and
finite state machines, which is naturally given by the overlap-free zone model. In [Leo98] Leonhardt
states: “Hence, a zone space is a natural framework for persistent object tracking and movement
prediction”.

4.3.4.3 The Location Domain Model

The location domain model is a formalization of an intuitive location understanding introduced
in [Leo98] and can be found in its various forms in other location-aware systems. The basic idea is
to define location domains as symbolic locations that can be ordered with respect to other location
domains. Therefore, the “contains” relationship is instrumentalized as a partial order on location
domains. As the underlying geographical areas also are “contained” in each other, this model is
understandable intuitively.

A location domain corresponds directly to the spatial relationships found in the real world: e.g.,
a floor is subdivided into different rooms and itself is part of a building which itself belongs to a
larger organization, like a university. Hence, location domains in the location domain model form
a location tree or -lattice, i.e., a directed location graph (cf. Fig. 4.3). Please note that usually the
“contains” relationship gets application specific and models a specific view on a location graph. In
Figure 4.3 we have depicted this by dividing the location graph into a geographical “physical layout”
and an application specific “logical layout”.

Obviously, to allow for strong consistency within the model any located entity that is member of
a location domain must also be member of all parent location domains. Mobile objects also can be
modeled as mobile location domains. The implication is that the position of a mobile domain within
the inclusion domain changes over time.
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Figure 4.3: The location domain model

Specification. As the location domain model shall build the interface between applications and
the underlying publish/subscribe middleware we include a more detailed specification of the proper-
ties briefly discussed above.

For the specification of a location domain model, we informally introduce two abstract data-types:
Location and Entity.

DEFINITION 4.3.4 Location
A Location is a unique identifier referencing a certain spacial extension.

DEFINITION 4.3.5 Entity
An entity is uniquely addressable in a location domain, e.g., a mobile device.

Based on the Location definition above and the (implied) structure as shown in Figure 4.3, it is
possible to define a location hierarchy. To have an operational description, we define two operations
on Location: contains and disjunct. The contains operation resembles the same operation in
the geometrical model but, additionally, is also irreflexive. Obviously, the operation is asymmetric,
as no spatial inclusion can work both ways at the same time. A room can be part of a floor but not
the floor part of the same room. We added irreflexivity, such that no location is part of itself. As
we require locations also to be contained by all its parents, contains is transitive. By modeling
contains this way we induce a partial ordering on locations and thus a location hierarchy.

Opposed to the geometrical model, we introduce a function to decide whether two locations are
disjunct. In the “flat” geometrical model it was important to add structure to the model by identifying
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overlapping areas. As the location model used here already has structure, it is more important to
know which locations do not overlap.

DEFINITION 4.3.6 Symbolic Location Hierarchy

anyLoc : Location

contains : (Location, Location)→ Boolean

disjunct : (Location, Location)→ Boolean

∀l1, l2 ∈ Location : contains(l1, l2) = true

⇒ contains(l2, l1) = false (asymmetry) (4.5)

∀l1, l2, l3 ∈ Location : contains(l1, l2) = true ∧ contains(l2, l3) = true

⇒ contains(l1, l3) = true (transitivity) (4.6)

∀l ∈ Location : contains(l, l) = false (irreflexivity) (4.7)

∀l ∈ Location : contains(anyLoc, l) = true (4.8)

∀l1, l2 ∈ Location : disjunct(l1, l2) = true

⇔ (∀l3 ∈ Location :
¬((contains(l1, l3) = true ∨ l1 = l3) ∧
(contains(l2, l3) = true ∨ l2 = l3))) (4.9)

For convenience we can introduce an additional operation overlaps which evaluates to true
whenever disjunct evaluates to false and vice versa.

Analogous to geometrical models, as defined in the previous section, we can define an additional
operator myLoc.

DEFINITION 4.3.7 Location Reference.

myLoc : ObjectId→ Location

Given the above definitions, now it is possible to define the notion of a location graph as a formal
representation of a specific set of locations and their relationships to each other. We use this definition
later in this chapter, as well as in Chapter 6.

DEFINITION 4.3.8 Location Graph
A Location Graph is a graph structure Loc = (L, C). Whereby L is the set of possible loca-

tions as defined above and C the set of edges between any two locations l 1, l2 from L, where
contains(l1, l2) = true.

4.4 A Reference Location Model for Publish/Subscribe
Middleware

In this section we present the reference location model for the use in the publish/subscribe middle-
ware. The location model of choice must facilitate two main properties:
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• Flexibility. By definition, middleware has to be flexible and extensible. This is especially true
for a publish/subscribe middleware for dynamic environments. When considering the choice
of a data model for representing location information, it is important to use a model that is as
versatile as possible without hindering the operation of the notification service. Especially in
pervasive environments, we have to take into account that (pairwise) consumers and producers
of data are not necessarily part of the same application domain.

• Efficiency. The item above states that the data model should be flexible and extensible. On the
other hand, the trade-off at this point is the efficiency of the filter model operating on location
data. For efficient routing it is mandatory to have a combination of data model and filter
model complementing each other. Therefore, the overhead necessary to evaluate a location-
dependent filter should be minimized where possible.

Effectively, the ideal location model adheres to the above properties and is convenient to use for
application-specific behavior at the same time. Obviously, this is the proverbial “quest for the holy
grail”. On the application level, we might want to specify location on a semantic level and in the in-
frastructure, we need location specifications to operate on the same syntactic level for comparability.
However, in the previous Sections 4.3.3 and 4.3.4 we have introduced two models for the specifica-
tion of location. The geometric model of Section 4.3.3 is operating on a flat and unstructured data
model which can be evaluated efficiently, given easy-enough geometrical shapes to compare. On
the other hand, the symbolic location domain model, as presented in Section 4.3.3, exhibits a strong
structure and semantic meaning to a certain degree. This makes it suitable for the specification of
location for applications.

4.4.1 Interoperability of Location Models

The best choice as a reference location model for the use within the core of the distributed notification
service is the geometric model of coordinate tuples and geometric shapes and the location domain
model as (optional) specification location model for the use in applications.

The challenge we face at this point is to show that bijective translation operations between these
two models can be defined. Luckily, as the intended similarities in the specifications of the loca-
tion models in Definition 4.3.2 and Definition 4.3.6 indicate, bijective mappings can be found (cf.
also [Leo98]).

To show that both models can be mapped onto each other we have to recall the underlying property
of both models: spatial extension in physical space. Thus, in both models, Area and Location,
respectively, reference a well-defined partition of space. In Figure 4.4 we have illustrated the basic
idea of the mappings.

Specification. First, we introduce a mapping from the location domain model into the geometric
model. Please note that in the following we label the operations contains, overlaps, and myLoc
according to their originating location model.

DEFINITION 4.4.1 loc2Area.
Given a Location Graph Loc, the mapping loc2Area has the following properties:
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Figure 4.4: Mappings of location models

loc2Area : Location→ Area

∀l1, l2 ∈ Location : containssym(l1, l2) = true

⇒ containsgeom(
loc2Area(l1),
loc2Area(l2)) = true (4.10)

loc2Area(anyLocsym) = anyLocgeom (4.11)

loc2Area’s semantics is that given a location graph Loc we can translate the disjunct locations
contained in Loc into the respective areas as defined in the geometric model. It should be noted
that the location graph Loc can be assumed to be static and therefore the mapping loc2Area can be
computed in advance.

A similar mapping can be found for the opposite “direction.” The challenge here is to find a
well-defined semantics if the area specified does not exactly match a location as specified in the
location graph. Then, the location graph has to be searched for the least location that covers the area
specified. As we assume to have a well-defined root-location in the location graph, i.e., anyLoc,
such a location always can be determined.

DEFINITION 4.4.2 area2Loc.
Given a Location Graph Loc, the mapping area2Loc has the following properties:
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area2Loc : Area→ Location

∀a ∈ Area, l ∈ Location : area2Loc(a) = l

⇔ containsgeom(loc2Area(l), a) = true ∧
(∀l′ ∈ Location :
containsgeom(loc2Area(l′), a)
⇒ (containssym(l′, l) ∨ l′ = l)) (4.12)

area2Loc(anyLocgeom) = anyLocsym (4.13)

The definition above states, that the set of possible covering locations for area a must be searched
until a location that covers a is found. Additionally, the mapping searches for the optimal matching
location. For efficiency reasons this requirement might be omitted. The case of translation from the
geometric model into the symbolic model usually occurs on the borders of the event broker network,
where application-specific location models are in use. Hence, for efficiency, we can piggyback the
original location description and replace the result of the geometric mapping again with the original
value, when a notification is delivered to a client. Thus, we do not necessarily need an additional
mapping operation.

With Definition 4.4.1 and 4.4.2 we have introduced means to map different data- and semantic
models of location onto each other. Additionally, the definitions given are suitable to serve as a basis
for the implementation within the filter model of the notification service.

4.4.2 Location Graphs

In this subsection we introduce location graphs, as a means to facilitate location-aware notification
delivery as introduced in Chapter 6. In Definition 4.3.8 on Page 64 we have introduced location
graphs for symbolic location models. There, the location graph is comprised of the symbolic lo-
cations and the containment relationships between them (cf. Fig 4.5(a)). Another example for a
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Figure 4.6: Floor plan and associated location graph

location graph is described in Section 4.3.4.2 and shown in Fig 4.5(c) where we have seen that zone
models constitute a natural location graph due to their discrete structuring of space and location.

However, for the use within the publish/subscribe notification service we need to provide a graph
structure which serves two purposes:

• Complementing the chosen location model in the infrastructure, i.e., the provision of informa-
tion where information is produced and consumed, and

• the description of possible and probable changes of location of entities over time.

Ideally, a location graph provides enough information to facilitate support for mobility, i.e., change
of locations. Thus, the location graph is a partition of potentially continuous movements through
space into discrete locations. Abstractly, a location graph constitutes a state chart with respect to
location changes according to a certain location model and its metric.

Obviously, we have to distinguish between application specific location graphs and system specific
location graphs. An example of the former is a location graph as it is produced by a route planning
application. Usually, in such an application only direction changes are indicated, like, changing
to a different highway. In this respect, a change of direction constitutes a location, rather than the
measurement in miles (reactive behavior). On the other hand, given a fixed location, like a building,
the notification service and its brokers are associated to a certain model of location to optimize
notification delivery (cf. Figure 5.8 on Page 95). We have seen before that in symbolic location
models the graph structure typically follows the concrete layout of the physical space it models. The
same idea can be applied to the layout of the broker network to draw from message delivery localities
for the support of mobile clients, as we will show in Chapter 5 and 6.

Thus, at the junction between an application-specific location graph and the system-wide location
graph, we need to specify the trade-off between those two notions of location graphs.

Before going into details we introduce granularity, describing the smallest “unit” for modeling
location.

DEFINITION 4.4.3 Granularity and minimal matching filters
For a given location graph Loc the GranularityG(Loc) denotes the set of smallest possible coverings
of space for the location model used within the notification service, i.e., the minimal matching filters
for a location graph Loc.

A minimal matching filter is a reification of a node of a location graph within the filter model used
in the publish/subscribe infrastructure.
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For a given location graph Loc = (L, C) that is associated with a space, a smallest matching filter
for a location loc ∈ L, i.e., a node in Loc, matches loc and all contained locations within, that are
not modeled as node in the location graph.

For example in Figure 4.6 on Page 68, the floor plan on the left-hand side can be translated into the
location graph Locfloorplan as shown on the right-hand side. Thus, G(Locfloorplan) = {A, . . . , J},
whereby {A, . . . , J} constitute the minimal matching filters for Locfloorplan.

Consequently, we allow to define a filter matching only, e.g., location A, but not to define a finer-
grained filter for a table contained in A. The only way to allow for this is either (i) to subdivide
the system-wide location graph until the granularity G also matches the table; Or (ii) to require ap-
plications to be able to do client-side filtering and filter out unwanted notifications. “Table” as a
discernable location, obviously is only required for an application-specific location model. Other-
wise, (i) would have been applied.

4.4.3 Location-Dependent Filters
Besides the specification of location and restricting the flow of notifications to a certain partition
of space, the location graph also serves the purpose of allowing for the special marker �����, as
introduced above in Definition 4.3.3 on Page 61 and Definition 4.3.7 on Page 64.

We allow clients to specify a placeholder within a subscription, referencing their current location.
From the viewpoint of an application this constitutes a way to be location-aware while moving
around, e.g., in a house or office space.

A publish/subscribe system that offers location-dependent filters has the same interface as a
regular publish/subscribe system (i.e., it offers the publish, subscribe, unsubscribe, notify primi-
tives). However, in specifying subscription filters for name/value pairs referring to “location” it
supports a new primitive to specify things like “all notifications where the attribute location equals
my current location”. More precisely, we postulate a specific marker myLoc that can be used
in a subscription. The marker stands for a specific set of locations that depend on the current
location of the client. Again in the “Free Parking Spaces” service, a client could issue a sub-
scription for all free parking spaces in the vicinity of his current location as follows: (service =
“parking”), (car-type ≥ “compact”) for the application domain-specific part of the service and (ab-
stractly) (location ∈ myLoc) in the envelope.

The set of locations associated with the marker is taken from a particular range L of locations for
a given location graph Loc. This set can contain all the different rooms of a building, all the streets
of a town, or all the geographical coordinates given by a GPS system up to a certain granularity.

Given a notification with the attribute location, the subscription (location ∈ myLoc) will evaluate
to true for a particular client C at location y if and only if C ∈ myLoc where myLoc is the specific
set of locations associated with a client C. In this case we say that the notification matches the
location-dependent filter.

In the car example, the car driver looking for a parking space might want to specify:

(location = “at most 0.5 miles away from myLoc”)

In this case, myLoc corresponds to all elements of L that satisfy this requirement.

A tentative but incomplete solution for location-dependent filters. While location-
dependent filters are not directly supported by current publish/subscribe middleware, one might
argue that it is not very difficult to emulate them on top of currently available systems in this case.
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Figure 4.7: Blackout period after subscribing with simple routing a) and flooding with client-side
filtering b).

The idea would be to build a wrapper around an existing system that follows the location changes
of the users and transparently unsubscribes to the old location and subscribes to the new one when
the user moves. However, depending on the internal routing strategy of the event system, it may
lead to unexpected results. The routing strategies deployed in many existing content-based event
systems such as Siena [CRW01], Elvin [SA97], and REBECA [FM00] lead to blackout periods where
no notifications are delivered. The problem is that it usually takes an non-negligible time delay to
process a new subscription. After subscribing to a filter, it takes some time td until the subscription is
propagated to a potential source. Then it takes at least another td time until a notification reaches the
subscriber. This phenomenon is depicted in Figure 4.7a. (Note that the delay t d may be different for
different notification sources and may change over time.) If the client remains at any new location
less than 2td time, then the subscriber will “starve”, i.e., it will receive little or no notifications.
However, in the context of location tracking in Section 4.4.4.2 we have specified exactly this solution
to clarify the semantics of the ����� marker in conjunction with location services and location
tracking services. An algorithm for the solution described here is given in the Figures 4.10 and 4.11
on Page 76 and Page 77, respectively. Later in this thesis (cf. Chapter 6), we will revisit this solution
and extend the solution proposed in the Figures 4.10 and 4.11 to avoid the shortcomings of this
tentative solution.

An intuitive but inefficient solution. Another basic solution that can be immediately built
using existing technology is based on flooding notifications through the complete network. The
local broker can then decide to deliver a notification to a client depending on the client’s current
location (see Figure 4.7b). Obviously, flooding prevents the blackout periods, which were present in
the previous solution, but it should be equally clear that flooding is a very expensive routing strategy
especially for large publish/subscribe systems [MFGB02].

On quality of service. Interestingly, while flooding is very expensive and therefore not desir-
able, it comes very close to the quality of service that we would like to achieve for mobility together
with location-dependent subscriptions, namely to the notion of being subscribed to information “ev-
erywhere, all the time”. The problem is that it is hard to precisely define the behavior of flooding
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without reverting to some unpleasantly theoretical constructions of operational semantics.
The quality of service we require for location-dependent subscriptions therefore is simply stated as

follows: On change of location from x to y, all notifications should be delivered to the consumer “as
if” flooding were used as underlying routing strategy. This statement is made a little more concrete
in Figure 4.8 where the sequence of notifications generated by any producer is divided into epochs
that correspond to when the notification actually arrives at the consumer (the epoch borders between
location y and z are drawn as a virtual notification ny→z). We require that all notifications matching
the current location-dependent subscription from every such epoch must be delivered. Intuitively,
the epochs define the semantics of flooding.

4.4.4 Location Specification

On the basis of the bijective mappings introduced above in Section 4.4.1, we are able to allow the
specification of location-dependent filters and notifications in terms of (i) the geometric model, as
well as (ii) the location domain model.

However, for both cases we need a specification language (or notation) for location-dependent
information. In the literature on location services and here again in [Leo98], specification languages
are detailed that take into account certain properties of location, uncertainty, and location models.
Therefore, for simplicity, in this thesis we follow this specifications and adapt them where needed.
As a basis serves the specification as introduced by Leonhardt [Leo98] but was extended for proper
use together with a notification service.

4.4.4.1 Naming

We want to enable applications (and users) to use a rich namespace to name locations. On the other
hand, due to the need for bijective mappings and thus the limitation to the location domain model,
we have to restrict the structure of the namespace sufficiently to maintain consistency.
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However, user-friendly naming in the general case of context-aware environments was extensively
examined and prototyped in [Huh01]. Based on [Leo98] and [Huh01], in this thesis, we restrict the
general notion of naming to the special case of naming of locations.

For the specification of a location, we need an area and a position 3. The area can be specified
as geometric area as defined above. A position can either be another geometrical specification or a
location concept. Thus we define:

DEFINITION 4.4.4 Location notation:

location ::= < area > @ < position >

area ::= < location concept > | < geometric definition >

position ::= < located object > | < fixed position >

| myLoc
fixed position ::= < geometric position > | < symbolic position >

geometric position ::= < reference system >′:′< coordinates >

symbolic position ::= (< symbolic position >′ /′ < label >)
| < well known position >

The definition above enables us to specify location predicates in filters. For example, we can
specify:

< 5m@university/elsewhere/wilhelminenstr/floor 1/room 120

to define a radius of 5m around the room C120 (the author’s office).
Another, more interesting example is:

< 500m@myLoc

Used in a location-dependent filter the above location predicate constrains matching to notifica-
tions originating from a radius of 500 meters around the current position.

4.4.4.2 Location Tracking

The example of using myLoc within a location-dependent subscription poses the question of how
such a position marker actually is kept up-to-date.

Due to the inherent generality of the notification service specified in this thesis and the use of
mixed location models, we have to apply a divide-and-conquer strategy. An instance of a notification
service should not be tied to a particular location tracking or positioning system. Otherwise such a
tie would be contradictory to the nature of the notification service as an open and extensible platform.
The problem is that a location tracking system might evolve over time or is exchanged by another
system. In such case, any close ties to a particular tracking system would render the notification
service useless for location-sensitivity.

However, for location-dependent subscriptions, we rely on the capability to track an entity’s lo-
cation and update the ����� marker accordingly. Fortunately, we defined ����� in a way that it

3 Relative to a reference positioning system.
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is a mapping from an ObjectId to an area or location, respectively. This enables us to specify an
interface to an external location tracking system, such as the location service specified in [Leo98].
Additionally, the location model introduced in this chapter basically is using comparable abstrac-
tions. Hence, delegation of location tracking to an external location service is not only feasible, but
also desirable to cleanly separate concerns. Thereby, we also promote extensibility and openness.

For the sake of simplicity, we do not consider issues of Universally Unique Object Identifiers
(UUID) and require the object identifier used in a location-dependent filter to be the same as it is
used within the location service. Given this simplification, we can define the semantics of �����
appropriately.

Consider the situation as shown in Figure 4.9. Client A has issued a location-dependent subscrip-
tion F (myLoc, A) for some location-related information. Let us further assume that Broker B1 is
the broker allocated for the location graph shown (cf. also Chapter 6 for more details). B1 therefore
is responsible for adapting ����� to the current position of client A.

Additionally, we have shown two more infrastructural components: a location tracking service
and a location service, respectively. Both are specialized components to provide in their combi-
nation a reliable source for client position sightings and updates. A detailed specification of their
functionality is out of scope of this thesis. For a survey of basic location tracking technologies refer
to, e.g., [HB01b; HB01a; Leo98].

Nonetheless, we can assume that both rely on the specified notification service as underlying
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communication infrastructure and therefore are aware of its basic properties. Please note that neither
the location tracking system, nor the location service have to be attached to the same broker as
client A. They constitute orthogonal concerns and therefore are not subject to any location model or
comparable metric. We have indicated this by assigning different brokers to both (B2 and B4).

Given the setting as described above, we assume that client A is changing location from “Room
1” to “Room 5”. The location system, e.g., an Active Bat [WJH97; ACH+01] or Cricket [PCB00]
system, detects the change of location and reports the new position of client A to the location track-
ing service. The location tracking service generates an application domain-specific location update
event and publishes N with publish(N(A, ′Room5′)) as notification into the publish/subscribe
infrastructure. The notification service now dispatches the notification N as standard non-location
related information, as the knowledge about the location is part of the application domain, shared
between location tracking service and location service 4.

Additionally, the location service is by default subscribed to any location update events generated
by the tracking service in order to keep the locations of clients up-to-date. Hence, the sent notification
N eventually is received by the location service. The information contained in the notification N
is used to update the database of (client, location)-tuples. Moreover, the location service itself
publishes an additional event N ′, containing the same information as N , but restructured as special
����� inter-broker message, where the location information is made explicit in the notification’s
envelope. This information N ′ is published into the notification service and used to update the �����
markers where appropriate. The general data structure of N ′ with respect to the ����� marker is
N ′(< ObjectId >, < location >), with ObjectID and location as introduced above. Details on
the implementation can be found in Chapter 9.

Every broker hosting clients that have issued location-dependent subscriptions subscribes to these
inter-broker messages with the ObjectId of their respective clients, thereby establishing a routing
path for location updates from the location service to the broker hosting the client. This last step
establishes the intended semantics of �����.

The algorithm every broker has to implement to facilitate location updates is summarized in the
Figures 4.10 on Page 76 and 4.11 on Page 77. A problem that arises when adhering to the asyn-
chronous publish/subscribe paradigm is the initialization of a new ����� marker. For now, we as-
sume a heartbeat mechanism, which regularly sends the current position of clients into the network.
Some triggered update mechanism is necessary as otherwise a currently non-mobile client would
never cause a location update notification. Then the current location would not be resolvable at all.
However, in Chapter 9 we introduce an implementation that uses a listener design pattern approach
to resolve this issue more elegantly.

Movement Graphs. In Chapter 6 we use movement graphs, i.e., a complementary graph struc-
ture to the location graph, to optimize responsiveness and setup times for moving clients using
the ����� marker. While the location graph basically describes the physical and logical contain-
mentships of locations, the movement graph describes the neighborhood and reachability of loca-
tions. Obviously, a movement graph can easily be derived from an available location graph. Once a
movement graph is instantiated it can be put to use for movement prediction and message delivery
optimization as we will show later in this thesis.

4 It is worthy to note that interaction between the two services also might be peer-to-peer. The use of the notification service
is for demonstration purposes only.
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4.5 Summary
In this chapter we have laid the foundations of context and location-dependent message delivery. We
have analyzed the concept of context-awareness from the viewpoint of a publish/subscribe infrastruc-
ture. The key categories of context we identified are application domain-specific and system-specific
context. The main distinction we elaborated on is the usability of a certain context information as an
index or addressing criteria for message routing. A context-aware publish/subscribe infrastructure
tries to optimize routing of messages by drawing on context information.

After identifying the key issues of general context-awareness in the light of the event broker
network, we narrowed the view to location-awareness as the prime source of context-awareness. We
emphasized the outstanding importance of location as a convenient index on context information.

Our discussion motivated the choice to build support for location-awareness into the core of the
event broker network by making location a first-class concept directly usable in subscriptions and
notifications. However, to do so, first we had to understand the implications of this approach by
analyzing the design space of location in the face of the asynchronous publish/subscribe paradigm.
In our taxonomy of location models we have shown that the two basic models usable are geometric
models or symbolic models of space and location.

We introduced both models in greater detail and analyzed their strengths and weaknesses to as-
sess their potential as reference location model for location-aware notification delivery. The analysis
showed that a geometric model of space and location is the natural choice for the use within the
routing network; but on the other hand, a symbolic model is the model of choice for the use in
applications. Thus, we settled on a hybrid model, the location domain model. It satisfies both re-
quirements by adding enough constraints to a symbolic model to provide bijective mappings between
the pure geometric model we use in the infrastructure and a more intuitive symbolic model used on
the application level.

Finally, we outlined the technical implementation by introducing the notion of location-dependent
filters and location-/movement graphs as a means to structure the layout of a distributed event broker
network according to the location model and movement restrictions faced in the “real” world (cf.
also Chapter 5 and 6). Furthermore, we showed that the graph structures can be exploited to model
a special new functionality in the broker network: the ����� marker. This marker is a placeholder
used within a location-dependent subscription. The semantics is an automatically updated location
reference. With such a reference to the current location, location-awareness is feasible. To emphasize
the need for support in the infrastructure, we showed where the “naïve” solutions to implement such
a behavior fall short. Additionally, we gave an algorithm for the actual implementation of ����� in
the brokers of the notification service. We will revisit and eventually extend the approach of �����
in Chapter 6.

������������
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/∗∗ upon receiving myLoc subscription (C, F (myLoc))
∗ via link LN ∗/

void receiveSub(C, F (myLoc), LN ) {
routeTable.add(C, F (myLoc), LN ); // add new subscription
propagate(C, F (myLoc), LN ); // to all neighbor brokers with

// matching advertisements except LN

if (!localClient.contains(C) {
createSubscription(this, locationUpdate(C)); //

// listen to all location update events for a given client C
createSubscription(this, locationHeartbeat(C)); //

// listen to all heartbeat events for a given client C
routeTable.setInit(C, F (myLoc), false); // set the

// Filter to inactive until current location is initialized
routeTable.setActive(C, false); // Set the client’s status

} else { // client is known; administration done
routeTable.setInit(C, F (myLoc),routeTable.getActive(C)});

// Initialize filter according to client status in broker

}
}

/∗∗ upon receiving notification n(loc) from Bj ∗/
void receiveNotif(n(loc),Bj) {

routeTable.route(n(loc)); // inspect all entries with myLoc
// and route accordingly (see below)

}

/∗∗ upon receiving myLoc update message ∗/
void receiveUpdate(n) {

routeTable.updateLocation(n.objectId, n.location); // update all entries
// where the client is n.objectId
// to the new location

}

/∗∗ upon receiving heart beat message for client ObjectId ∗/
void receiveHeartbeat(n) {

routeTable.updateLocation(n.objectId, n.location); // update all entries
}

/∗∗ upon timeout of C ∗/
void receiveTimeOut(C){

routeTable.remove(C, ∗);

}

Figure 4.10: Basic algorithm for ����� subscriptions.
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/∗∗ routing with location attributes ∗/
class RouteTable {

. . . // ommmited details

void route(Notification n) {
if (n is n(loc)) { // has location attribute

for (∀f ∈ filters with myLoc assigned) // (myLoc) subscriptions
if (contains(f.myLoc.current(), n.location()))

// is the notification contained by the current location of the client?
if (f .match(n.content())) // then deliver iff content matches

deliver(f , n);
} else {

// normal operation w/o location
}

} // end of route()

void updateLocation(ObjectId id, Area loc) {
for (∀f ∈ filters of client ObjectId &&

myLoc assigned) { // all location-dependent filters for client C
if (!f.myLoc.initialized()) // not initialized

f.myLoc.initialized := true; // set to initialized and active
f.myLoc.current := loc; // assign the new location
propagate(C,f); // propagate change of location

}
} // end of updateLocation()

} // end of class RouteTable

Figure 4.11: Extension to the class RoutingTable
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5 Mobility Extension for a Distributed
Notification Service in Mobile
Environments

You know what a “legacy application” is?
It’s one that works.

Bill Cafiero, co-chair of many ANSI ASC X12 task groups

5.1 Introduction
In this section we focus on extending the REBECA model of a distributed notification service to
support mobile clients, i.e., mobile consumers and producers of data which are used in mobile set-
tings. However, up to now research in event systems has mainly focused on using publish/subscribe
middleware in rather static, non-mobile environments, i.e., systems where clients do not roam and
the infrastructure itself stays rather fixed or is only changing slowly during the system’s lifetime.
Consequently, most publish/subscribe infrastructures (cf. Chapter 3) have optimized algorithms for
information delivery in those settings. Support and optimizations for mobile clients are no built-in
features of the infrastructure; it is left to the applications to adapt or reissue subscriptions.

Obviously, the first step towards mobility is to make the publish/subscribe middleware mobility-
aware. Therefore, we need to add support for roaming clients and their needs. From the application’s
point of view, making use of the inherent loose coupling, we should be able to continue to use ex-
isting, successfully deployed applications that are based on the publish/subscribe paradigm without
having to rewrite them (“legacy” applications). A very simple example is the famous stock quote
application, seamlessly transferred from a non-mobile desktop PC to a mobile device, such as a PDA
(cf. Fig. 5.1).

As a first step and basis for future developments, applications should not need to be aware of
mobility, carrying on their processing independent of their location. On the other hand, some appli-
cations rely on the awareness of mobility and their sourrounding, e.g., context-aware applications.
Those applications have different needs than the applications assumed in this chapter and will be
the central topic of the Chapters 6 and 7. Another aspect is that not every subscription issued by
a context-sensitive application is necessarily related to the current context; such applications might
want to hide some aspects of mobility in the infrastructure, in cases where awareness of mobility
and the current surrounding is not exploited.

In this chapter we introduce mechanisms, built on top of a notification service, especially designed
to take care of subscriptions issued by mobile devices. Subscriptions and related notifications are
relocated from broker to broker, while users and devices roam the physical world connecting to
different brokers along their itinerary, effectively achieving complete transparency of mobility.
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Figure 5.1: Location-dependent notification delivery in physical mobility

For the provision of location transparency the distributed notification service has to arrange for
handling the unavoidable side-effects inherent to mobile environments. They must not have to be
the concern of the application layer. Side-effects include phenomena like low bandwith lines or
transient phases of disconnected operation. Thus, to meet the requirement of location transparency,
the notification service has to be adapted for this purpose by introducing special means of mobility
support into the network of brokers. The foremost need we identified is transparent connection
handling or, to be more precise, handling the loss and re-establishment of connections. Another
concern for the infrastructure is the handover of subscriptions from one to the next border broker
that is currently hosting the client, when an application on a device is mobile. Therefore, we need
mechanisms for rerouting and replaying of notifications to different locations in the broker network.

The general structure of this chapter is as follows: the next section analyzes the requirements
for mobility support in more detail. However, the heart of this chapter is Section 5.3. There, we
show how the brokers constituting the distributed notification service have to be extended to cater
for mobile clients. After giving more details in subsequent sections, in Section 5.5 we discuss how
our extensions meet the requirements stated before and argue that it optimally facilitates transparent
mobility support for mobile clients. Finally, we compare the solution presented in this chapter to
alternative approaches and discuss where they fall short in comparison to our approach. Thereby we
clearly state our contribution to the field of mobile publish/subscribe systems.

5.2 Analyzing the Requirements

The general requirements introduced in the previous section share some similarities to what in the
area of mobile computing is called terminal mobility or roaming. A client accesses the system
through a certain number of access points (GSM base stations, WLAN access points, or in our case,
border brokers). When moving physically, the client may get out of reach of one access point and
move into the reach of a second access point with possibly non-overlapping reaches. In the remainder
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we will address this with the term physical mobility or roaming. In general we cannot expect to have
seamless access to the broker network but more a sequence of phases of connectedness, e.g., on the
daily route between home and office. In this setting we analyze the quality of service requirements
from the viewpoint of roaming clients.

Transparency of Mobility. One of the prime advantages of transparent mobility support is the
usefulness for legacy applications. However, the publish/subscribe paradigm is well established
in non-mobile setting, hence, in general legacy applications are not aware of mobility. If adding
mobility support should require a change of interface between applications and publish/subscribe
infrastructure, without redesign of applications a changed interface would render legacy applications
useless. Obviously, this requirement is not necessary for mobility-aware applications that want to
deligate some aspects of mobility. We state this result in Requirement 5.2.1:

REQUIREMENT 5.2.1 Interface. The interface for applications to the publish/subscribe system
must not change.

Completeness. Despite intermittent disconnects, the publish/subscribe middleware should de-
liver all notifications for a client eventually. This is the core requirement for achieving transparency
of mobility. Usually, in static, non-mobile scenarios a client can assume reliable delivery of notifi-
cations. Unfortunately, reliability is a scarce resource in mobile settings. However, for maintaining
transparency of mobility, the impression for applications of reliable message delivery must be built
on top of the notification service in the mobile case. This is summarized in Requirement 5.2.2

REQUIREMENT 5.2.2 Completeness. Despite intermittent disconnects, the publish/subscribe mid-
dleware delivers all notifications for a client eventually.

Ordering In Section 3.3 sender FIFO ordering was guaranteed for the classical non-static case.
Requirement 5.2.3 below introduces the same guarentee as an eligible feature in the mobile case,
too. In the static case no “session management” was necessary to rely on correct order delivery of
notifications originating from a single source1.

REQUIREMENT 5.2.3 Ordering. Sender FIFO ordering as in the non-mobile case remains intact.

Responsiveness The delay of relocating a roaming client should be minimal to maximize the
responsiveness of the system. This has to be taken into account when designing a relocation protocol.
Usually, due to the distribution and inherent overhead of mobility support, especially the latency of
notification delivery can be expected to be higher. On the other hand, the basic REBECA model of
notification delivery explicitly does not assume an upper bound on message delivery over any link
in the network (cf. Section 3.3). Hence, any application using the standard REBECA notification
service has to be designed taking deferred delivery into account.

REQUIREMENT 5.2.4 Responsiveness. The delay of relocating a roaming client should be minimal
to maximize the responsiveness of the system.

1 As already mentioned, this does not mean that a global ordering can be achieved in case of multiple sources.
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Figure 5.2: Missing notifications in a flooding scenario.

Informal invariant derived from the requirements. To maintain a connection and to hide
phases of disconnectedness, the responsibility of providing access to the system is usually handed
over from one access point to the other (involving some handover protocol). Overall, the invariant of
the algorithm presented throughout the next sections is that any application should have the impres-
sion to a reasonable degree that it is operating in a rather reliable, static, non-mobile environment,
where erroneous states (e.g., notification loss) might happen but should not happen regularly.

Possible naïve solutions. One solution would be to rely on Mobile IP [Joh95] for connecting
clients to border brokers, hiding physical mobility in the network layer. The drawback, however, is
that the communication is also hidden from the publish/subscribe middleware, which is then not able
to draw from any notification delivery localities or routing optimizations, thereby possibly violating
the requirement of responsiveness. Such an approach might only be feasible if the physical and
logical layout of a given system is completely orthogonal.

A different, naïve solution to implement physical mobility would be to use sequences of sub-
unsub-sub calls to register a client at a new broker. When a client moves from border broker B 1 to
B2, it simply unsubscribes at B1 and (re-) subscribes at B2, without any support in the middleware.
But a client may not detect leaving the range of a broker and is in this case not able to unsubscribe
at its old location. Even more severely, during its time of disconnectedness, the client might miss
several notifications or get duplicates, even if notifications are flooded in the network and the location
change is instantaneous. This problem is depicted in Figure 5.2. Hence, this solution is not complete
and we outline an algorithm in Section 5.3 that takes into account all requirements stated above.

5.3 Notification Delivery with Roaming Clients

In this section we introduce an algorithm for extending standard REBECA brokers to cope with mo-
bile clients, maintaining their subscriptions as well as guaranteeing the required quality of service
that was described in the previous section. Apart from guaranteeing uninterrupted notification deliv-
ery, our algorithm also ensures that the old border broker will eventually receive an equivalent to an
explicit sign-off from the client even if an explicit unsubscribe was not possible.
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Figure 5.3: Moving client scenarios with one and multiple producers

By design, the mechanism we use introduces a natural way of distributed caching, which seems in
general preferable to a potentially problematic central caching proxy. Moreover, our solution even
supports a correct handling of a multiple-producer scenario as shown in Fig. 5.3(b).

5.3.1 Algrithm Overview
The routing network of REBECA was extended to implement an algorithm consisting of three dis-
tinct phases, propagation, fetch, and relocation. Using exclusively the publish/subscribe paradigm
together with the distributed broker network, each phase has a separate goal.

• Propagation. The goal of the propagation phase is basically twofold. In Figure 5.3(a) one
can see that, after a client is reconnecting to a different broker, a new path to one or more
producers of requested data must be set up. However, due to the special structure of the broker
network this path is meeting the old delivery path at some point. We call this particular broker
the junction broker. By identifying the junction where old and new path meet, the propagation
phase is finished and a new delivery path is set up.

• Fetch. After the identification of the junction a special fetch message is sent along the old
delivery path, with the goal of shutting down the old delivery path and, more importantly,
identifying which part of the old delivery path can be discarded and which part has to be
redirected. This is the case in a multiple producer example as shown in Figure 5.3(b). After the
fetch message reaches the border broker of a relocating client C, the second phase terminates.

• Relocation. The last phase is the actual relocation of cached messages for client C. A standard
replay message as already being part of REBECA is used to sent messages from the old location
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to the new location. An additional goal is to “garbage-collect” those parts of the old delivery
path between junction and border broker not used anymore for message delivery. The replay
is propagated along the old delivery path in the direction of the junction, from there it is sent
along the new path to the new location of C where old notifications are delivered to the client
eventually.

After termination the effect of the algorithm is that a relocating client effectively has bridged
phases of disconnected operation, without losing notifications and with almost the same delivery
guarentees as in the non-mobile case. We will explain how this is achieved throughout the next
sections.

5.3.2 Prerequisites
The solution sketched in this chapter can be used in every environment that meets the following
requirements. First, border brokers have to install and maintain a buffer for all notifications that
are not yet delivered for a certain period of time in order to deal with disconnects. Second, the
underlying routing infrastructure uses advertisements. Although not strictly necessary, the relocation
effort is reduced substantially in that they guide the search for the old delivery path. Simple routing
is assumed as routing strategy for now and extended later. Finally, border brokers or clients must
have some means of detecting the new configuration that a client has entered the range of the broker.
Some form of beacon or heartbeat is presupposed.

5.3.3 Algorithm Outline
We use a stepwise refinement of traditional subscription processing as described in Section 3.3 to
devise the algorithm:

1. When reconnecting to a broker, subscriptions are automatically reissued so that clients do not
need to re-subscribe manually.

2. The broker network configuration is updated to accommodate to client relocation rather than
handling an (otherwise necessary) independent new (re-)subscription from a new location.

3. Notifications forwarded to the old location have to be replayed to the new one in order to
bridge disconnectedness.

4. Delivery of new notifications has to be postponed until the replay is finished. In this way,
moving does not influence the per-sender order of notifications, fulfilling the ordering require-
ment.

Basic case: single producer. Consider the scenario of Fig. 5.3(a). Client C is moving from
broker B6 to broker B1 (step 1 in the figure). The local broker, which resides on the client, e.g.,
in form of libraries, is informed by the new border broker about its relocation, according to the
prerequisites. It then reissues active subscriptions, which were previously forwarded through and
recorded in the local broker anyway. By avoiding manual re-subscriptions of the client application,
the first requirement of mobility transparency (cf. Req. 5.2.1) is achieved, i.e., the interface to the
middleware is not changed.

In the second step, we enable the publish/subscribe middleware to relocate the client. The goal
of the relocation process is to update the routing configuration and redirect the old delivery paths to
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C to the new destination. During this process, the reissued subscription is propagated as usual in
the direction of any received advertisement through B 2 and B3 to broker B4, setting up their routing
tables. At B4 the old and new path from producer P to client C meet (dotted and dashed line, respec-
tively). Broker B4 is aware of the junction because an entry of the old path of this subscription/client
is already in its routing table.2 When the routing table in the junction is updated, new published
notifications will be delivered to the relocated client. Without assuming any knowledge about the
old location of the moving client, the system is able to draw from localities in that only a portion of
the delivery path is changed. Changes are limited to the smallest subgraph necessary for diverting
routing paths, facilitating the timeliness/efficiency requirement which is only available with inherent
middleware support.

The third step ensures completeness over phases of disconnectedness during movement. The
junction broker B4 sends a fetch request along the old path to B6 following the routing table entries
for the given subscription. All brokers along this path update their routing tables such that they are
pointing into the direction the fetch originates from, i.e., B 4. Border broker B6 as last recipient
replays all buffered notifications. If delivered notifications are annotated with sequence numbers by
the border broker, reissued subscriptions can in turn carry the last received number to qualify the
replay. Note that replays are forwarded only in the direction of a specific subscription and do not
mingle with other clients’ data. After replaying the path from the old broker to the junction can be
shut down by deleting the subscription’s routing table entries as long as advertisement and routing
entry point into the same direction; thereby excluding and stopping at the junction. In this way the
notifications that passed the junction broker before its update are collected and sent towards the new
location, ensuring the required completeness.

The last extension finally reorders the notifications so that the sender FIFO condition remains valid
after relocation. The new border broker has to block and cache all incoming notifications that are
to be delivered to the given client (not impeding communication of other clients) until the replay is
finished. Of course, additional mechanisms like timeouts have to ensure that delivery is not delayed
indefinitely. As with all buffering, consistency can always only be guaranteed for a predefined, finite
amount of time or space.

Extension: multiple producers. We extend the previous example in order to cope with more
than one producer. Let us assume a scenario like in Fig.5.3(b), figure on the right. The scenario is
the same as before except client C was subscribed to more than one producer. The only change in
behaviour of the process is that every broker B i on the old path towards B6 starting with B4 has to
check whether there is more than one advertisement for a producer matching filter F . If so B i is a
broker at a junction, like B4, and hence the path towards B4 must not be discarded. Only the part
after passing the last junction can be deleted safely. In order to determine which is the last broker
with a junction the algorithm uses the fetch request in one direction and the replay message in the
other. On the way towards B6 every broker with a junction towards a new producer replaces the
broker ID in the fetch request with its own. In this example the sequence is B 4 (starting the process)
and than B5 when reaching the next junction at broker B5. B6 receives a messages where the broker
ID is set to B5 because no more junctions are on the path. The replay message on the other hand is
used to delete the not needed appendix of the path towards B 1. As soon as B5 receives a message
from B6 and the ID of B5 equals the ID contained in the message, B5 “knows” it is the last broker
with an additional producer on the path towards B6 and therefore cannot delete the routing table
entry for (C, F ) but has to modify it to point to B4. Compared to the first example the difference is

2 Subscriptions can be identified if simple routing is used. For covering and merging cf. Section 5.5.3.
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obvious: While in the first scenario B6 and B5 could garbage collect (C, F ), in the second scenario
only B6 can do so, while B5 updates its routing table, yielding the correct and desired behaviour in
both cases.

5.4 Algorithm Details
We now give the complete details of the algorithm for roaming clients which was presented by
example in Section 5.3. The algorithm itself is given in two figures:

• Fig. 5.4 gives the algorithm for a border broker directly connected to a moving client

• Fig. 5.5 gives the algorithm for an inner broker made aware of moving clients and receciving
messages from neighboring brokers.

5.4.1 Basic Case Analysis
By design, the mechanism we propose introduces a natural way of distributed caching. Hence, for
every border broker connected to a client a caching data structure must be added.

We now analyse the different cases which the algorithm caters for and relate them to the stan-
dard behavior of the underlying REBECA system. The algorithm has to distinguish between four
important situations:

1. A completely new client “wakes up” for the first time and submits some subscription to a
broker B for the first time. This is slightly different from a new subscription issued after
B has already received some other subscription from this client (i.e., knows already that the
client is present).

2. The client was suspended (e.g., for saving energy) and has now resumed operation and wants
to be set up properly by receiving events it has missed in the meantime but no location change
occurred.

3. A client C connecting to a border broker Bnew is a roaming client moving from one location
to another (i.e., sending a subscription (C, F ) with a sequence number of the last notification
received for this subscription to broker Bnew). Obviously, this has to be done whenever the
client detects the change of context3.

4. A client is suspended at one location and then moved to another location where it resumes
operation. This situation is analog to a combination of the situations above and has not to be
handled separately.

5.4.2 Algorithm Behavior
Given the four situations above, we now explain how the algorithm reacts.

3 Please note that this is a rather complicated situation for an event middleware: as a mobile client usually cannot predict a
change of broker before leaving its range (e.g., because it is just leaving a wireless network cell) it can only react to the
new situation. For a “roaming-aware” client this means that it cannot unsubscribe to a producer at the old border broker
before connecting to a new one. Hence, mobility in a publish/subscribe system is more likely a sequence of subscribe
operations than a sequence of subscribe-unsubscribe-subscribe operations.
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/∗∗ upon recv sub (C, F, num) via link LC ∗/
void receiveSub(C , F , num, LC ) {

if (!RoutingTable.contains(C , F )) { // Client/Filter is unknown
routeTable.add(F , C, LC); // Allocate new RoutingEntry
initializeCache(C, F ); // Initialize cache for the client
if (num > 0) {

RoutingTable.setBlockingFlag(C, F , LC , true); // wait until relocation
}
propagate(C, F , LC); // propagate to all neighbors, except LC

} else { // client reconnects
sendCache(C, F ); // finish

}
} // receiveSub()

/∗∗ upon recv fetch(C, F, num, Bprod) from Bj ∗/
void receiveFetch(C, F , num, Bprod, Bj) {

if (advertisement.numberOfMatches(F ) > 1) {
routeTable.update(F , C, LBj ); // change RoutingEntry to Bj

} else {
routeTable.delete(F , C , RoutingTable.ALL); // remove all entries

}
send(new ReplayEvent(new FetchMessage(F , C, num, Bprod),

[e1, ..., en],
Bj); // send replay back to Bj

} // receiveFetch()

/∗∗ upon recv replay(fetch(C, F, num, nil), [e1, ..., en]) from Bj ∗/
void receiveReplay(FetchMessage(F , C , num, Bprod),

[e1, ..., en],
Bj) {

prependToCache([e1, ..., en], C, F );
routeTable.setBlockingFlag(F , C, Bj , false); // unblock delivery
// delivery resumes automatically

} // receiveReplay

Figure 5.4: Actions of a border broker receiving a message from a client C
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/∗∗ upon recv of subscription (C, F, num) from Bj ∗/
void receiveSub(C , F , num, Bj) {

if (!RoutingTable.contains(C, F )) { // Client/Filter is unknown
routeTable.add(F , C , Bj); // Allocate new RoutingEntry
propagate(C, F , Bj); // propagate to all neighbors, except Bj

} else { // the current broker is the junction
brokerOldNext = routeTable.get(C , F ); // remember old path
routeTable.update(F , C, Bj); // update to new path
send(new FetchMessage(C, F , num, Bcurrent), brokerOldNext);

// send fetch message along the old path
}

} // receiveSub()

/∗∗ upon recv of fetch(C, F, num, Bprod) from Bj ∗/
void receiveFetch(C, F , num, Bprod) {

brokerOldNext = routeTable.get(C,F ); // store old path information
routeTable.update(F , C, Bj); // update to new path
if (advertisements.numberOfMatches(F ) > 1) {

send(new FetchMessage(C,F ,num,Bcurrent, brokerOldNext);
// replace last junction marker

} else {
send(new FetchMessage(C,F ,num,Bprod, brokerOldNext);

// keep last junction marker
}

} // receiveFetch()

/∗∗ upon recv of replay(fetch(C, F, num, Bprod), [e1, ..., en]) from Bj ∗/
void receiveReplay(FetchMessage(C, F , num, Bprod),

[e1, ..., en],
Bj) {

brokerNext = routeTable.get(C, F );
if (Bprod != null) {

if (Bprod == Bcurrent) {
send(new ReplayEvent(new FetchMessage(C,F ,num,null),

[e1, ..., en],
brokerNext); // send fetch message

} else {
routeTable.delete(C , F , RoutingTable.ALL); // clean up
send(new ReplayEvent(new FetchMessage(C, F , num, Bprod),

[e1, ..., en],
brokerNext); // send fetch message

}
}

} // receiveReplay()

Figure 5.5: The algorithm for an inner-network broker receiving a message from broker B j .
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Wakeup of a new client. This case is already covered by the standard REBECA middleware:
The subscription is added to the local routing table and the subscription (C, F ) is forwarded in the
direction of all known advertisements matching filter F . As a completely new subscription starts
with the sequence number num = 0, the broker can separate this situation from situation 3. For
details refer to the first block of statements of Fig. 5.4.

Resuming of a client at same border broker. This case is also covered by the standard
event mechanisms provided by REBECA, as the broker knows the client and its subscriptions (the
broker has some routing table entries for the client) and therefore event delivery simply could be
resumed. Nevertheless, to adhere to the requirement of completeness, the broker has to instantiate
a cache for each client and subscription (we propose a ring buffer data structure for enforcing the
maximum number of cached notifications together with a Time-to-Live (TTL) mechanism for opti-
mizing the utilization of buffer space). Whenever the client gets online again it is forced to re-issue
its subscription together with the last sequence number it has received from a broker. The broker
simply has to send all cached notifications to the client beginning with the next notification in the
sequence (see first block of statements in Fig. 5.4).

Direct relocation. The main issues of the relocation process are: (i) tracking down the old
location without explicit knowledge, as neither client nor new broker know the old broker’s identifier,
(ii) fetching any cached notification for the client from there, and (iii) the old broker has to receive
an explicit sign-off for garbage collection. We have to distinguish between border and inner brokers
for this case:

1. Border broker at new location:
This is comparable to situation 2 above together with a new flag on a routing table entry
(inactive) initiating buffering until further notice (see second and third block of statements in
Fig. 5.4). Upon reception of a replay message, the cached notifications will be appended to
the replayed ones and then delivered.

2. Any inner broker:
For any given relocation process an inner broker can play one of three possible roles, either it is
an ordinary broker on the new path from the producer to the consumer and has not encountered
this particular subscription before, or it is the one broker “sitting” on the junction between the
old and the new path, or one of the brokers on the path to the old location, somewhere between
the broker at the junction and the border broker at the old location.

• Ordinary broker:
The same as every inner broker for situation 1 (see also first block of statements in
Fig. 5.5).

• Broker at a junction:
This is a broker sitting on the junction between old and new path on the itinerary to a
client4. The broker can determine this state for any incoming subscription by inspecting
the routing table. Whenever a given subscription is already present, the broker is the
first one on the path to the old location (with respect to the propagated subscription).
We introduced a new inter-broker message type fetch(C, F, num, B i) (piggybacked to

4 Note that such a broker always exists on the path to a particular producer due to the structure of the broker network as
defined in section 3.3.3.
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a normal subscription) to handle this situation. The message is sent along the old path
for two reasons: (i) to initiate sending of cached notifications at the old location, and (ii)
to determine the number of obsolete hops on the path which can be discarded after the
client has left. Finally, the broker updates its routing table to point to the new location
and resumes normal operation.

• Broker on the old path receiving a fetch:
Whenever an inner broker receives a fetch request (see second block of statements in
Fig. 5.5) obviously the broker is a hop on the path between the first junction and the old
location of client C. It has to send the message further along the path after checking
whether or not it has a path to another producer the client was subscribed to (multiple
producer) and (i) if not, to simply update its routing table to point to the broker the
message was received from or (ii) if so, to replace the broker identifier in the fetch request
with its own, to indicate that the path to client C is not obsolete from this broker on and
then to update the routing table like in (i).

• Broker on the old path receiving a replay:
Whenever an inner broker receives a replay message5 it simply routes the message to-
wards the new client location after checking whether or not it can discard the routing
table entry for client C. To do so it checks the broker identifier B prod enclosed in the
message: (i) the identifier is not the same as the one of the current broker, i.e., the cur-
rent broker is located some hops after the last junction, or (ii) the identifier is identical,
i.e., this broker is located at the last junction. In case of (i) the routing entry can be dis-
carded and in case of (ii) the broker identifier in the replay message is set to some well
known value nil indicating that the process of freeing resources has terminated.

3. Border broker at old location receiving a fetch message:
Whenever a border broker receives a fetch message for some (C, F, num) from broker B j

it has to create a new replay message with all buffered notifications for (C, F ) starting from
num + 1 and send it in the direction of Bj . After this it can clean up und de-allocate all
resources allocated to client C, i.e., has received an equivalent to an explicit “sign-off”.

Once the complete relocation process has terminated the algorithm asserts the requirements stated
above, namely that (i) all notifications send to the old location (modulo messages discarded due to
limited caches or expiration periods) will eventually reach broker B new, (ii) broker Bnew delivers all
notifications to client C in correct order, i.e., respecting sender FIFO by sending redirected notifica-
tions first and then newly arrived ones, (iii) broker Bold at the old location will eventually detect the
relocation of client C and can discard all subscriptions and caches for this client, i.e., has a simple
and elegant criteria for garbage collection.

Client move after suspension. As the new broker cannot distinguish between a client newly
powered on or one entering its range, this situation is already covered by situation 1, 2, and 3.

5 This message type is part of the standard REBECAsystem and in this context indicates that the relocation process is finishing
and on the “way back” to the new location of client C.
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5.5 Discussion
In this section, we want to discuss certain aspects of the algorithm presented before. In the course
of discussion, we show that the design choices made for the relocation of mobile clients are justified
in order to meet the requirements stated in Section 5.2. Moreover, we argue that our approach is
superior as, to the best of our knowledge, it is the only approach meeting all requirements identified.
We show where and why apparantly comparable approaches fall short.

The requirements we focus on here are:

• completeness (cf. Requirement 5.2.2),

• ordering (cf. Requirement 5.2.3) and,

• responsiveness (cf. Requirement 5.2.4).

5.5.1 On Cache Management
The algorithm proposed above only uses mechanisms offered by the underlying publish/subscribe
infrastructure, thus adhering completely to the publish/subscribe paradigm, which we consider de-
sirable. However, every broker must maintain per-subscription caches, i.e., for every subscription
issued by a client, a separate cache is initialized and maintained until the broker encounters one of
two possible cases:

1. The cache is relocated to another location or

2. the cache expires due to a timeout.

Consequently, any border broker B j , which is hosting n clients, has to maintain cachesBj caches,
with

cachesBj =
n∑

i=1

|subi|.

|subi| is the number of subscriptions issued by client i at border broker B j . Additionally, any
local broker and border broker has to maintain a sequence number associated to each subscription.
It should be clear that we face a trade-off between the resources available at a border broker and the
requirement of completeness, as stated by Requirement 5.2.2. Although we assume border brokers
explicitly not to be resource-limited, with a growing number of clients and subscriptions the available
resources allocatable to a client are bounded. Thus, in a worst case scenario, completeness is not
maintainable. A client suspended for too long must cope with the expiration of formerly allocated
caches when the border broker assumed a client to be “dead” or the loss of some notification that
were too old for delivery (expiration date in the notifications) or are overwritten in the cache when a
circular buffer exceeds its capacity. Even if storage and resource constraints in the border brokers are
not of concern, mobile clients may be disconnected for a long period of time in which more missed
notifications are cached than the client can handle during replay. The possibly limited resources
of mobile clients must be taken into account when designing cache sizes or limiting the replay by
semantic filtering [HGM01].

However, clearly, our approach tries to avoid problematic scalability issues by using a fully dis-
tributed solution. Every border broker in the network with clients attached to it maintains local
caches. Thereby, we try to avoid issues of a potential bottleneck as a central caching solution would
most likely run into.
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5.5.2 On Ordering and Completeness vs. Responsiveness
On connection of a client, a border broker has to determine whether a new client appeared and a
relocation process is necessary, or a client reconnects after a suspend phase. If the client is unknown
to the broker relocation is initialized for every subscription of client C separately. To do so, three
fundamental phases of the algorithm are used: the propagation, the fetch, and the relocation phase.
The first phase is basically identical to any common subscription processing. However, the second
and third phases are unique to client relocation. In the second phase a fetch message is used to
identify all paths from a junction broker to the old border broker. Moreover, an incoming fetch
message also serves the purpose of an explicit move-out operation as it is assumed to be possible
proactively in other approaches (cf. Section 3.5, e.g. JEDI), which, we argue, is unrealistic in mobile
settings. During the relocation phase the old border broker replays notifications within the broker
network from the old to the new location, using the freshly identified and marked path from old
border broker to the new one. Along its way, the replay is used to facilitate garbage collection on
those parts of the delivery path not needed any more for the new location of client C.

The summarized benefits of our solution are:

1. No in-transit messages. The fetch message sent along the path between junction and old
border broker serves as a shutdown message or a “closing tag”. After this message no other
message related to client C is in transit to the old border broker. Hence, after receiving the
fetch message for a subscription, the border broker instantaneously can start the relocation
process.

2. Sequence numbers. As we maintain buffers in the old and the new border broker, together with
a well-defined “switch-over” mechanism based on sequence numbers, no messages are lost.

3. Ordering. As termination of the relocation process is guaranteed, the new border broker can
withhold message delivery of new notifications until the relocation of old notifications is fin-
ished. By appending new notifications after older, relocated notifications, sender FIFO order-
ing is maintained.

4. Full distribution. The buffering scheme proposed in our algorithm is fully distributed. In
general, this seems highly favorable in terms of responsiveness. Our algorithm assures that
changes to the infrastructure are minimal and affect only the smallest possible subgraph of the
routing network. Below we will discuss this issue in full detail.

5. Simplicity. The algorithm entirely adheres to the paradigm of publish/subscribe. Therefore, it
can be based completely on mechanisms already implemented in REBECA or that can easily
be added. This approach fosters implementability on top of an existing notification service.

While item 1. and 2. together guarantee completeness, item 3. states the matching of the ordering
requirement. Naturally, this is only accurate taking the design of the underlying algorithm into
account. The only requirement actually not fully tackled is the requirement of responsiveness. One
might argue that by only using the publish/subscribe infrastructure for relocation, unnecessary delays
in the relocation process are introduced. However, using out-of-band communication for speeding
up the relocation process may introduce unwanted side-effects as we show below.

Shortcomings of alternative out-of-band solutions. The term out-of-band communica-
tion denotes any communication which is not done using the communication primitives and broker
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Figure 5.6: Schematic behavior of out-of-band communication

network offered by the publish/subscribe infrastructure. The most important are direct request/reply
and push-based protocols.

In a mobile scenario, two obvious solutions for out-of-band communication seem promising (cf.
Fig. 5.6(a) and Fig. 5.6(b), respectively):

• New location−→ Old location, request/reply.
Whenever a client connects to a new border broker B i, it submits a unique and globally resolv-
able address of border broker Bj , responsible for the old location. The new border broker B i

subsequentially opens a direct channel to the border broker at C’s old location and requests
any notifications belonging to client C, using the client’s ID and, per subscription, the last
sequence number received. Broker Bj transmits the associated caches and unsubscribes from
the information in question, if C was the only subscriber for this data. On the other hand, B i,
after having received the cache replay, subscribes to the same data at the new location.

The prime advantage of the sketched solution is responsiveness, as, in general, a direct connec-
tion is supposed to have shorter latencies than a connection using the topology of the broker
network. However, this solution violates Requirement 5.2.2 (completeness) and in some cases
Requirement 5.2.3 (ordering). In Figure 5.6(a) the situation of missing notifications is de-
picted. A client connecting to a new border broker is requesting the cache for some client
C. The border broker at the old location cannot make assumptions about messages in transit,
i.e., which are in delivery somewhere in the broker network. Thus, to gain advantage over our
solution in terms of relocation speed, the current snapshot of the cache must be transmitted to
the requesting broker. Obviously, messages are lost whenever they are in transit in the part of
the delivery path unique to the old location, i.e., after the junction.

However, to avoid message loss due to in-transit messages another solution can be chosen.
Border Broker Bj located at the client’s old location might keep the connection to broker B i

open for forwarding of messages for C received after the relocation event. Unfortunately,
avoiding the pitfall of in-transit messages this solution violates the ordering requirement. As
the new broker subscribes to the same information as the old broker, due to the layout of the
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broker network and the unpredictability of latencies, the same information might be sent to
both, the old and the new location. Without proper mechanisms for the detection of duplicates,
this solution falls short, too.

• Old location−→ New location, push-based.
A different approach, avoiding the pitfalls of the above approach, is to invert the communi-
cation relationship between old and new location and let the old border broker connect to the
new location of client C. Here, the old broker is located using the first two phases of our al-
gorithm as described in Section 5.3, i.e., the propagation- and fetch phase. Thereby ensuring
that no in-transit messages are in the network and preparing the old delivery path for shut-
down. The third phase (relocation) is done by establishing a direct communication channel
between border brokers Bj and Bi. The caches for client C are then simply pushed to the
new location. By prepending them to any notifications received and cached in the meantime,
no ordering problems or message loss can occur. In the static case this approach assures the
same guarantees as our algorithm presented above. But the sketched approach fails if location
changes occur to often.

As depicted in Figure 5.7, let a client C move from location L 1 to location L2, taking time
tmove1. At location L2 it stays for time tloc2, then moves on to location L3, which takes the
time tmove2. Relocation with push-based out-of-band communication fails if the following
relation holds:

(tprop1 + tpush1 + c1) > (tloc2 + tmove2 + tprop2 + tpush2 + c2), with c1, c2 ∈ N

Where c1 and c2 are constants representing the accumulated processing time needed for relo-
cation. The basic failure criteria is that the broker infrastructure needs some time for setting
up the broker network before caches can be pushed. Should the relocation process from L 1 to
L2 take longer then the client stays at L2 and relocation from L2 to L3 is fast, than L2 might
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already have reallocated resources for C when data from L 1 is pushed, resulting in message
loss.

Neither approach, request/reply nor push-based, suffices to meet all requirements at the same
time. Request/reply is the least favorable approach as message loss due to in-transit messages can
be costly in case of incremental notifications, resulting in serious inconsistencies. We are aware of
some notification services using this approach, but none using something similar to our proposed
push-based approach. However, under certain constrains push-based relocation can be considered
as a viable optimization of our approach, namely whenever movement speed can be assumed to be
slow enough and garbage collection in inner brokers can be done externally.

On Message Complexity In this paragraph we will informally analyze and give a feeling for
the message complexity of the proposed algorithm.

• Best-case. The most basic case is when a roaming client changes from one broker to a nearest
neighbor in the broker network. In Figure 5.8(b) the change of a roaming client C from node
8 to node 9 can serve as an example. Then, the direct parent node in the broker tree acts as
junction broker (node 4) and one of its direct sibling nodes is the old border broker of client
C. Hence, exactly four messages are sent and the complexity class is O(1).

• Worst-case. The largest possible distance between two brokers is constituting the worst-case
scenario. In the network of brokers this is the two times the height of the spanning tree of
brokers.

DEFINITION 5.5.1 Let h(T ) be the height of the spanning tree of brokers T , with h(T ) being
the largest number of edges between the root node of tree T and a leaf node of T .

Obviously, then the worst case is 4h(T ),
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– h(T ) for the propagation phase,

– h(T ) for the fetch phase,

– 2h(T ) for the relocation phase.

As we have depicted in Figure 5.8, hierarchical location models (Fig. 5.8(a)) can easily be
mapped to a well-balanced tree structure (Fig. 5.8(b)), if a system is well-designed for the use
with mobile clients and a notification service. The actual instantiation of a tree structure is
dependent on the concrete real-world layout of a physical location. We use a binary tree as
shown in Fig. 5.8(b), as a binary tree structure is the worst case assumption in such a scenario 6.
Then the worst-case analysis gives

O(n) = log2(n),

with n being the number of brokers in the network. In general, given a well-balanced tree of
order k, the message complexity converges against O(n) = logk(n).

• Average-case. The average case analysis is rather more complex. The key challenge is to
model the impact of client mobility appropriately. Influencing factors for the expected number
of messages to be sent in the average case are:

– The pairwise probabilities of client movements from some border broker B i to another
border broker Bj .

– The number of messages sent whenever a particular movement occurs.

Obviously, the instances of probabilities are dependent on the actual physical realities. A well-
behaving user (usually) cannot walk through walls or “transport” to other locations instantaneously.
Hence, to model the expected number of messages in the system we get:

Emessages = p1n1 + p2n2 + . . . + pmnm, (5.1)

where m is the total number of possible location changes, p i is the probability that a location
change i occurs and ni the number of messages sent for this relocation event.

For the slightly simplified scenario of Fig. 5.8 this results in

Emessages = 4 p1 n1

+ 2 p2 n2

+ p3 n3 (5.2)

where p1 is the probability of a change to the direct neighborhood (cf. Fig. 5.8(b)), p 2 a change
affecting the next larger subtree of tree T , e.g., a change from one Block to another, and p 3 a larger
change of location causing messages to be sent through the root node of T , inducing the largest
message complexity. However, given an even distribution, we can evaluate equation 5.2 to:

Emessages =
1
2
n1 +

1
4
n2 +

1
8
n3

6 This is because the “fan-out” is restricted to two outgoing links only.
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As it can be seen in Figure 5.9(a), in the average the algorithm converges against a fixed num-
ber of messages to be sent for the relocation, hence in well-layouted systems the average message
complexity can be in O(1). However, when probabilities change, so changes the average message
complexity. For demonstration purposes in Figure 5.9(b) we have included the average analysis if a
system is designed especially inefficient. For a result as presented in Fig. 5.9(b) we had to assume
that in half of all relocations the case with the largest possible number of messages sent occurs and
the most “harmless” case only with a probability of p1 = 1

8 for our example of a tree of height
h(T ) = 3 (cf. “p3” and “p1”in Fig.5.8(b)). Then we get:

Emessages = 4
h(T )∑
i=1

(
1
2
)h(T )+1−ii (5.5)

Obviously, the message complexity is O(h(T )), in this case, i.e., the number of messages sent is
increasing linearly with the height of the tree. In case of a balanced tree, the tree increases in height
with every doubling of brokers in the network 7. Therefore, even in a non-optimal layouted system the
algorithm remains well-behaving. But in most of the cases the result can be improved significantly
simply by reordering the inner nodes of the broker network according to the probabilities of location
changes observed. It must be noted that the inner nodes are not dependent on the actual physical
layout of the “real” world, as the border brokers are. Adaptation of the broker network according to
the relocation events as occurring in the physical world can yield a significant improvement in terms
of message complexity.

5.5.3 On Possible Extensions
Covering. If covering instead of simple routing is used to establish the routing tables, the fetch
phase of the algorithm has to be extended. Now, the junction is reached if an entry with a covering
subscription F ′ ⊃ F is already registered. At this point the delivery path to the new location is
correctly built up, but we do not know whether the old location lies in the direction of F ′ or in the
direction of the advertisements. The fetch phase is extended in that fetch requests are sent towards
all advertisements and all covering subscriptions; it is a kind of flooding in the overlay network of
matching producers and consumers of similar interests. Only one of the fetch requests will not get
dropped and finally reach the old border broker. The replay has to be flooded in the same overlay
network if no tunneling mechanisms, internal or external, are used.

Merging. The previously denoted extensions can also cope with a broker network that is based
on merging. Only the number of potential covers increases, and hence the size of the flooded overlay
network. Both covering and merging promise to increase routing efficiency, but on the other hand
aggravate relocation management.

7 For the assumed case of a binary tree.
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Figure 5.9: Average case analysis

Movement Speed. For simplicity reasons we assume that the client’s movement speed is not
too fast for the relocation process to terminate before the client moves again, i.e., the process always
terminates at the correct broker. However, if re-subscriptions of the local broker are annotated with
a relocation counter, which is reset after a successful replay, concurrent relocation processes can be
identified and controlled in the middleware, avoiding the speed limit.

5.6 Summary

In this chapter we presented a solution to support mobility in existing publish/subscribe middleware.
A relocation algorithm is presented that facilitates physical mobility with location transparency,

offering the possibility to transfer existing event-based applications to mobile scenarios as well as
supporting mobility-aware applications that want to delegate the responsibility for relocation into
the infrastructure. The algorithm seamlessly extends an existing content-based routing infrastruc-
ture, the REBECA notification service, to support non-interrupted, sender-FIFO ordered delivery of
notifications to moving clients, which need not be aware of this extension. No central repository
or control nor any communication outside of the publish/subscribe infrastructure is needed. On the
other hand, applications can still benefit from the service’s inherent benefits, like advanced routing
algorithms. In the discussion of our solution we showed clearly that no other proposed or apparently
comparable solution is supporting the publish/subscribe paradigm to the same extent as the solu-
tion we proposed. We showed that we can guarantee transparency of mobility, together with sender
FIFO ordering, and eventual completeness of notification delivery. By analyzing best-, worst-, and
average-case scenarios, we also showed that our solution is well-behaving in terms of message com-
plexity. We also identified the key parameters for optimizing message complexity in any given
environment, i.e., layout of the physical environment and logical layout of the broker network.
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The presented solution for mobile clients in publish/subscribe systems transfers the characteris-
tics of the publish/subscribe paradigm to mobile scenarios in an appropriate way. Loose coupling
and drawing from notification delivery localities is explicitly supported. The underlying idea for
extending REBECA was partly presented in [ZF03; FGKZ03].

������������
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6 Exploiting Uncertainty for
Location-Dependent Notification
Delivery

There is such a choice of difficulties,
that I own myself at a loss how to determine.

James Wolfe, 1727-1759, British General.

6.1 Introduction

In Chapter 4 we have laid the foundations to incorporate location as a first-class abstraction into the
core of a publish/subscribe notification service. There, we introduced a reference location model,
together with a precise definition of a location graph and its derivate, the movement graph. We made
use of the location model not only to specify concrete location-dependent subscriptions and notifi-
cations, which is helpful for non-mobile but location-aware clients, we also specified the semantics
of a special location marker �����.

We introduced ����� as a means for mobile clients to express a standing request for location-
dependent data while roaming around. A client that is interested in some location-specific infor-
mation can express its interest by using the placeholder ����� in the specification of the location-
dependent part of a subscription. The infrastructure then is responsible for updating the placeholder
����� according to any relevant position update of the client that was detected.

As we showed in Section 4.4.3, it is reasonable to place this functionality within the infrastruc-
ture to relieve a client from location-handling. The basic algorithm to facilitate location-dependent
subscriptions in the notification service is shown in Figure 4.10 and Figure 4.11. But, due to the
distributed nature of the underlying system certain problems arise when implementing the idea as
discussed in Section 4.4.3 (cf. Fig. 4.7 on Page 70): either the solution introduces unwanted “black-
out periods”, where no notifications are delivered, or might lead to too much traffic for a client
to process and possibly overloading a client. The former phenomenon occurs due to the implicit
sequences of:

subscribe(myLoc = loc1)
movedTo(C,loc2)−→ subscribe(myLoc = loc2), unsubscribe(loc1)

The latter phenomenon occurs when flooding of location-dependent information is used, i.e., the
location-dependency is mostly ignored and every information is available at all locations within a
certain range. Then, ����� basically is defaulted to 
�����, as defined in Chapter 4 in Defini-
tion 4.3.2 on Page 61, and clients must filter out all unwanted information. However, as no change

101
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of subscription is necessary, no blackout periods are experienced. Thus, the experienced responsive-
ness to location changes is significantly better than using sequences of “sub-unsub-sub”.

Nonetheless, flooding is not only not efficient but also bears the potential to be “dangerous” for
small devices (cf. Requirements 2.2.1 and 2.2.10) in terms of processing capacity and wireless
network congestion. It is easily possible that a small device is rendered useless due to unwanted
information overload caused by flooding.

We therefore want to explore the possibility to find a trade-off between the number of messages
sent and the “smooth” hand-over from one location to another.

In this chapter we show how a movement graph can be exploited as a means to optimize the
behavior of the algorithms introduced in Chapter 4. The results of this chapter were presented in
[FGKZ03].

The goal of our approach is to achieve comparable responsiveness of the location hand-over “as
if” flooding were used and, at the same time, avoid the drawbacks. By intelligently extending the
basic mechanism of “sub-unsub-sub”, we exploit context-information available about the possible
future locations of a client to pre-subscribe to location-dependent data in a timely fashion. The effect
is that the approach introduced in this chapter minimizes setup times in the infrastructure for a client
and uses a form of “restricted flooding” for the optimization of responsiveness when a client moves
around.

6.2 Basic Idea
We allow clients to specify subscriptions using the special marker ����� in the same way as in-
troduced in Chapter 4. However, as we have shown there, the “naïve” implementation using “sub-
unsub-sub” sequences to update the routing tables for a particular client to the current location might
lead to unwanted results. The least desirable effect for a client are blackout periods due to an unpre-
dictable setup time. This does not only include the time it needs to actually update the routing tables
to accommodate a new position of a client, but also the time it needs to propagate the new location
sighting through the event broker network. The information must be propagated by the tracking
system to a location service and then as �����-update notification through the network of brokers
(cf. Figure 4.9 on Page 73 for details).

However, the overall goal is to significantly reduce the accumulated setup times such that a client
experiences a frictionless change of location explicitly without a notable setup time after having
changed from, e.g., the office to the conference room next door. The adaptation of the location-
dependent subscription should take place instantaneously. This constitutes a principle of being sub-
scribed to relevant location-dependent information “everywhere, at once”, i.e., a semantics compa-
rable to flooding.

The principal problem is that part of the setup time is determined by factors which are out-of-
influence of a notification service. In Section 4.4.4.2 on Page 72, we explicitly separated the location
tracking facilities from the event broker network. The notification service acts as client to location
tracking as orthogonal concern. Moreover, the time and mode of location updates solely is subject
to the (external) tracking system used and can take a significant amount of time. Thus, the total
time it takes to propagate location changes through the broker network mainly is dependent on some
external system.

Under this circumstances it is impossible to realize the needed quality of service for moving clients
by adhering to a purely reactive model as proposed before. The basic idea now is to pre-subscribe to
locations a client possibly will move to next. To do so, we rely on context information in the form



6.2 Basic Idea 103

A B

D

C

F',{A}=F0

F',{A}=F1

F',{A,B,C,D}=F2

Figure 6.1: Uncertainty of ����� in the broker network

of a movement graph of locations reachable from the client’s current position. As we have shown in
Section 4.4.4.2, a movement graph easily can be derived from available location information and the
underlying location graph used.

We have illustrated the basic idea in Figure 6.1. A client at location A has issued a filter F (C, myLoc).
Thereby, for the sake of the illustration, F ′ is the specification of application domain specific content
and {l1, . . . , ln} denotes the set of locations ����� evaluates to. The location-dependent filter issued
then permeates the network and a routing path between a producer of information matching F and
the client at location A is set up. This is exactly the semantics of ����� in the first place. We now
use knowledge about the reachable next locations for setting up alternative routing paths from pro-
ducers of location-dependent data to the client. However, to prevent degeneration of this approach to
simple flooding, we have to restrict the range of possible new locations to subscribe to probable new
locations. The probability of a new location mainly depends on the (anticipated) movement speed of
a client and the reachability of a location within a certain time-frame.

While the movement speed is dependent on the application domain and the anticipated clients, the
latter can be taken from a pre-computed movement graph. Subscribing to probable new locations
introduces uncertainty into the filter model of the publish/subscribe infrastructure, as routing paths
for “virtual client” are established. Hence, information is delivered to locations the client eventually
will not move to. One might characterize such behavior as a form of “restricted, adaptive flooding”.

Effectively, by pre-subscribing to information at a probable new location, the following is realized:

• A client reaching a location, e.g., B in the example above, already receives location-dependent
data for this new location, hence experiencing a frictionless change of location.

• The setup time for the new location is negligible.

• Once the location change is detected the area of uncertainty for a client can be updated and
the notification service can unsubscribe to locations not reachable in due time and again pre-
subscribe to probable new locations.

Throughout the following sections we will detail this basic idea and give an algorithm for the use
in the broker infrastructure.
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Figure 6.2: Filters along the path between producers and consumers.

6.3 Location-Dependent Filters for Logical Mobility
We now describe the algorithmic solution to the scenario where clients are locally mobile, i.e., they
remain attached to a single border broker of the broker network. For location-dependent information
delivery this is a typical situation, whenever location and application domain correlate. Typically,
the application domain and thereby the location-dependent subscription change, when changing lo-
cation at the “large scale”. For example, the application domain is different when being in the office
during daytime than the application domain used at home. Therefore, it is reasonable to assume that
mobility is constrained to a single broker. However, we sketch a solution for location-dependent
publish/subscribe together with roaming clients in the next Chapter 7.

6.3.1 Main Idea
Consider an arbitrary routing path between a producer (publisher) and a consumer (subscriber). This
path consists of a sequence of brokers B1, B2, . . . , Bk−1, Bk where B1 is the local broker of the
consumer and Bk is the local broker of the producer (see Figure 6.2). Assume the consumer has
issued a location-dependent subscription F . Using the “usual” content-based routing algorithms, the
current value F̃ of F would permeate the network in such a way that the filters along the routing
path allow a matching subscription which is published by the producer to reach the consumer. For-
mally, the filters F1, F2, . . . , Fk along the links between the brokers should maintain a set-inclusion
property

Fk ⊇ Fk−1 ⊇ . . . ⊇ F2 ⊇ F1 ⊇ F0 = F̃

at all times.
If F is the only active subscription in the network or simple routing is used and if the subscription

has permeated the network, the above formula can be simplified to

Fk = Fk−1 = . . . = F2 = F1 = F0 = F̃ .

As being remarked above, for every change of location, i.e., for any new value F̃ of F , a new
subscription must flow through the network towards the producers. Notifications which are published
in the meantime for the new location of a client might go unnoticed due to the latency of location
detection and filter setup.

In a nutshell, the idea of the proposed scheme is to always have the local broker of the consumer
do perfect client-side filtering (i.e., set F0 = F̃ ), but to let possible future notifications reach brokers
which are nearer to the consumer so that their delay to reach the consumer is lower once the consumer
switches to a new location. Effectively, we want to maintain a certain degree of uncertainty of a
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Figure 6.3: Movement graph defining movement restrictions of a consumer.

client’s location in such a way that, once a client actually changes location, the filters for the new
location are already set up.

More precisely, filter F1 would be devised in such a way that it contains F0 but also all notifications
which should reach the consumer for any new consumer location which could be reached within “one
step”. Similarly, F2 contains all notifications of F1 but also those notifications which are possibly
interesting if the consumer takes two steps. In a sense, the generality of the filters increases with the
uncertainty of the future location: for a broker, there is more certainty about what will be interesting
to the consumer in the future the closer the broker is to the consumer.

Let T denote the set of time values, which for simplicity we will assume to be the set of natural
numbers N. Let L denote the set of all consumer locations. Then we define a function loc : T → L
which describes the movement of the consumer over time. For example, for a very simple location
set L = {a, b, c, d} a possible value of loc is {(1, a), (2, b), (3, d), . . .} meaning that at time 1, the
consumer’s location is a, at time 2 it is b and so on. Thereby, we have a means to describe a particular
trajectory of a consumer.

We assume that loc is subject to movement restrictions as reflected by a movement graph (cf.
Section 4.4.4) . In effect this defines a maximum speed of movement for the consumer. For example,
such a restriction could result in a movement graph such as the one depicted in Figure 6.3. The
graph formalizes which locations can be reached from which locations in one movement step of the
consumer. Here, one movement step corresponds to one time step.

Given the function loc and a movement graph, we define a function ploc : L×N→ 2 L of possible
(future) locations (the notation 2L denotes the powerset of L, i.e., the set of all subsets of L). The
function takes a current location x and a number of consumer steps q ≥ 0 and returns the set of
possible locations which the consumer could be in starting from x after q steps in the movement
graph.

Since a possible move of the consumer always is to remain at the same location, for all locations
x ∈ L and all q ∈ N we should require that

ploc(x, q) ⊆ ploc(x, q + 1). (6.1)

Taking the example values from above, possible values for ploc are as follows:

ploc(a, 0) = {a}
ploc(a, 1) = {a, b, c}
ploc(a, 2) = {a, b, c, d}

Now, if the consumer is at location a, for example, every broker B i along the path towards a
producer should subscribe for ploc(a, q) for some q, which is an increasing sequence of natural
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Figure 6.4: Network setting for the example.

t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 6.1: Values of ploc(x, t) for the example setting.

numbers depending on i and the network characteristics. If the time it takes for a broker to process
a new subscription is in the order of the time a client remains at one particular location, then the
individual filters Fi along the sample network setting in Figure 6.4 should be set as F i = ploc(a, i),
e.g., F0 = ploc(a, 0) = {a}, F1 = ploc(a, 1) = {a, b, c} and so on. This requirement should
be maintained throughout location changes by the consumer. For example, whenever a consumer
moves from an old location loc1 to a new location loc2, the corresponding border broker eventually
declares the new location by changing the location-dependent part of filter F 0 for client-side filtering
from the old to the new location. All brokers concerned update their routing table appropriately.

In general, broker Bi sends a message with the new location to Bi+1 instructing it to change Fi

from ploc(loc1, i) to ploc(loc2, i) and consequently to update the routing table by removing certain
locations and adding new locations. Removing and adding new locations corresponds to unsub-
scribing and subscribing to the corresponding filters. For our implementation using the REBECA

notification service, common administration messages can be used to do this. Note that Equation 6.1
guarantees the subset relationship, which should always hold on every path between producer and
consumer.

6.3.2 Example
As an example, consider the value of loc where at time 1 the client is in location a, at time 2 at b
and at time 3 at d in the movement graph depicted in Figure 6.3. Table 6.1 gives the values of ploc
for all locations and the first four time instances. For t = 0 the value of ploc is equal to the current
location. For t = 1 it returns all locations reachable in one time step in the movement graph, etc.

Now assume again the setting depicted in Figure 6.4. The values of Table 6.1 directly determine
the filter settings for F0, . . . , F3 as shown in Table 6.2. At time t = 1 the client moves to location b.
This means that F0 changes from {a} to {b} and that F1 must unsubscribe to c and subscribe to d,
yielding F1 = {a, b, d}. At time t = 2 the client moves to d, causing F0 to change to {d} and F1 to
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time t F3 F2 F1 F0

0 {a, b, c, d} {a, b, c, d} {a, b, c} {a}
1 {a, b, c, d} {a, b, c, d} {a, b, d} {b}
2 {a, b, c, d} {a, b, c, d} {b, c, d} {d}

Table 6.2: Values of filters in example setting.

ploc(x, t) for global sub/unsub
t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
3 {a, b, c} {a, b, d} {a, c, d} {b, c, d}

ploc(x, t) for flooding
t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 6.3: Values of ploc(x, t) for trivial sub/unsub implementation (top) and flooding with client-
side filtering (bottom).

unsubscribe to a and subscribe to c. All other filters remain unchanged.
The example nicely shows that the method does some sort of “restricted flooding”, i.e, all notifi-

cations reach broker B2 but from there the uncertainty is restricted and so is the flow of notifications
forwarded by B2. In fact, the method described above using the ploc function can be regarded as
an abstraction of both “trivial” implementations discussed in Section 3.4 (i.e., both implementations
are instantiations of our scheme), as we explain in the following section.

6.3.3 Adaptivity

The example setting above assumes that processing a new subscription by a broker takes about as
long as a consumer stays at one particular location. Obviously, it will usually take much less time to
process a subscription even if slow or wireless network connections are used (user movement will
be in the order of seconds while network delay will be in the order of milliseconds). We now present
a scheme that adapts the level of “buffering” in the network to the average movement time of the
client. Our algorithm satisfies this form of adaptivity. The details of our algorithmic solution can be
found in Section 6.3.4 of this thesis and in [FGKZ02], accordingly.

In the following, we denote the average time a client remains at one location by ∆ and the time it
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t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 6.4: Values of ploc(x, t) for the example setting with concrete timing values.

δ1
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∆ 2∆

δ1+δ2

δ1+δ2+δ3

Figure 6.5: Estimating ploc steps with respect to concrete timing bounds.

takes to process a sufficiently large batch of sub/unsub messages between brokers B i and Bi+1 by
δi. If the client moves very slowly, meaning that the sum of all δ i is still less than ∆, we would like
the scheme to behave like the trivial sub/unsub solution. For the example setting from the previous
section this would mean that ploc has values like in the top part of Table 6.3 (note that the algorithm
always has to provide information for “the next” user location to maintain the semantics of flooding).
On the other hand, if the client moves very fast and ∆ is much smaller than δ 1, the method should
revert to flooding (i.e., ploc values like in the bottom part of Table 6.3).

If ∆ is neither very large nor very small, what values should ploc acquire? The idea is to relate
multiples of ∆ to the increasing sum of the δi as follows: Whenever the sum of δi results in a value
larger than the next multiple of ∆ then the value of ploc must “take a step”. As an example, assume
the following values (all in milliseconds): ∆ = 100, δ1 = 120, δ2 = 50, δ3 = 50, δ4 = 20. Now
consider Figure 6.5 where the sums of these values have been put on a single scale. The ploc value
for client-side filtering (F0) is fixed to the current location of the client. Since it takes longer for the
brokers B1 and B2 to process a location change than the client moves, the system must insert a level
of buffering at this point, i.e., ploc must cater for one additional step of uncertainty at this stage.

Considering that δ1 + δ2 < 2 ·∆, a location change can be processed fast enough between B 2 and
B3 so that no additional buffering is necessary at this point. However, the sum δ 1 + δ2 + δ3 > 2 ·∆,
and so ploc must have one additional step between B3 and B4. The resulting values in the example
setting for ploc are shown in Table 6.4.

6.3.4 The Algorithm Proper
For a given location graph Loc = (L, C), with L being the set of possible locations of some client X
and C the set of edges denoting the relationships between locations, a movement graph M = (L, E)
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/∗∗ upon receiving new location−dependent subscription F from X
∗ with current location loc and given ∆ via link Ln do ∗/

void receiveSub(X, F, loc, ∆, Ln) {
Entry e = ldfTable.createNewEntry(); // allocate new entry e in ldfTable
ldfTable.add(e.setFilter(F,X,0)); // initialize e with F , X , and 0
routeTable.add(X ,F [L/{loc}]); // subscribe to F [L/{loc}]
propagate(X, F [L/{loc}], ∆, 0, Ln); // and send (X, loc, ∆, 0) to

// all neighboring brokers except Ln

}
/∗∗ upon location update for Client X:
∗ moved from locold to locnew given ∆ do ∗/

void receiveLocUpdate(X, locnew, locold, ∆) {
for (all F ∈ ldfTable referring to X) {

routeTable.remove(F [loc/plocX(locold, 0)]); // unsub to old location
routeTable.add(F [loc/plocX(locnew, 0)]); // sub to new location
propagate(X, locold, locnew, ∆, 0) // propagate to all

//neighboring brokers.
}

}
/∗∗ upon receiving an unsubscription for
∗ location−dependent filter F from X at location loc do ∗/

void receiveUnsub(X, F, loc) {
routeTable.remove(F [L/{loc}], X) //unsubscribe to F [L/{loc}]
ldfTable.remove(F, X); //de-allocate entry containing

// F in ldfTable
propagate(X, loc, F ); // send (X, loc, F ) to all neighboring brokers

}

Figure 6.6: Algorithm for the border broker BX of client X .

can be generated. L holds the same locations as in Loc and E is the set of “movement edges”
between the locations. This results in a graph as shown in Figure 6.3. As we mentioned before such
a graph can be generated and deployed at setup time of the publish/subscribe system. We assume
that all brokers know ploc.

Data structures. Every broker has an additional routing table data structure 	�&�
�	� where
location dependent filters are stored in their original form, i.e., with the marker ����� uninterpreted.
In general, we assume that FX ≡ (V, (loc ∈ L)), where V is an arbitrary sequence of name/value
pairs without references to �����. We instantiate F into F̃ by simply replacing loc with some set of
locations L′. We denote this instance as F [L/L′].

For every entry in 	�&�
�	� the originating client is stored (i.e., X) and a natural number oldstep.
Every broker Bi maintains a network statistic about the average network delay δBi→Bj for sending

messages from Bi to Bj . Every client X maintains a statistic of the average time ∆ he remains at a
specific location.
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/∗∗ upon receipt of (X, F, loc, ∆, dist) from Bj do ∗/
void receiveSub(X, F, loc, ∆, Ln, dist) {

dist := dist + δBi→Bj ; // calculate dist

step := �dist
∆ �; // calculate “uncertainty”

Entry e = ldfTable.createNewEntry(); // allocate new entry e in ldfTable
ldfTable.add(e.setFilter(F,X,0)); // initialize e with F , X , and step
routeTable.add(X ,F [L/plocX(x, step)]); // subscribe to

// uncertainty area F [L/plocX(x, step)]
propagate(X, F, loc, ∆, dist, Bj); // and send (X, F, loc, ∆, dist) to

// all neighboring brokers except Bj

}

/∗∗ upon receipt of (X, x, y, ∆, dist) from Bj do ∗/
void receiveLocUpdate(X, x, y, ∆, dist, Bj) {

dist := dist + δBi→Bj ; // calc. distance
for (all filters F ∈ ldfTable referring to X) {

newstep := �dist
∆ �; // calc. uncertainty

routeTable.remove(F [L/plocX(locold, oldstep)], X); // unsub
// old locations

routeTable.add(F [L/plocX(locnew , newstep)], X; // sub new locations
oldstep := newstep;
ldfTable.update(X,F,oldstep); // store oldstep in ldfTable
propagate(X, F, locold, locnew, ∆, dist, Bj); // send

// (X, locold, locnew, ∆, dist)
// to all neighboring brokers except Bj

} // end for
}

/∗∗ upon receiving unsub (X, loc, F ) from Bj do ∗/
void receiveUnsub(X, loc, F ) {

routeTable.remove(F [L/ploc(loc, oldstep]); // unsubscribe to
// F [L/ploc(x, oldstep]

ldfTable.remove(F, X); // de-allocate entry for (F ,X) in ldfTable
propagate(X, loc, F, Bj); // send (X, x, F ) to all neighboring

//brokers except Bj

}

Figure 6.7: Algorithm for the broker Bi receiving a message from broker Bj .
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Algorithm. The algorithm for a local broker BX of some client X is depicted in Figure 6.6. If
a client issues a new location-dependent subscription F it is entered into the table ldfTable and the
local routing table is updated by subscribing to the proper instance F̃ . Information about this new
filter is forwarded through the network within the algorithm for the other brokers (see Figure 6.7).
During this process, all other brokers allocate an appropriate entry in their ldfTable and subscribe to
the “right” instance of F given the current distance from X . Note that during the propagation of the
new filter through the network the value of dist continuously sums up the network delay along the
path. This value determines the “step” of the ploc function which is used to instantiate F correctly.

When a client changes location from locold to locnew, all the brokers similarly update their routing
tables by taking the information about the changed location, unsubscribing to the old filter and
subscribing to the new correct instance of F . In doing so, the distance dist is recalculated and may
also lead to changes in how F is instantiated.

From the algorithm it is obvious that the information about a new location-dependent subscription
(and about every location change) necessarily permeates the entire network of brokers. But in the
case of a dynamic network environment it is not possible to avoid this behavior. To see this, consider
a client moving from location locold to locnew and assume that the network behavior is the same
in the entire network except that a network link between two very far away brokers B j and Bi has
suddenly become very slow so that it is necessary for B i to increase the step in the ploc function and
subscribe to “more” locations than before. But to do this, information about y is needed at B i.

6.3.5 Informal Analysis
We now analyze our algorithm quantitatively. The main question we pose is how much network
traffic our algorithm can save compared to flooding. The answer to this question depends on many
different parameters. For our informal analysis, we calculate the total number of messages processed
for a set of common network scenarios and derive some conclusions from these numbers.

The base scenario we consider consists of a publish/subscribe system which is built around a
backbone of event brokers. The brokers within the backbone are connected with high speed commu-
nication links on which the network delay δf is low. However, clients are attached to the backbone by
very slow communication links that have a high network delay δ s. In our case we chose δf = 10ms
and δs = 600ms and assume that they do not change.

To ease calculations, the broker backbone is assumed to have the structure of a tree with degree b
and h levels (see Figure 6.8). This simplification is justified based on our discussion about location
graphs and their impact on the layout of the broker network in Section 4.4.

However, for comparing the algorithm with flooding, scaling the producers is more important
than the consumers. In fact, for flooding, each message produced crosses every network link in the
broker network. How many consumers actually “listen” to those messages is unimportant. Hence,
we assume that each border broker serves p clients which will play the role of notification producers
in this scenario. In our case we set b = 3, h = 4 and p = 10. Because of the tree structure, we can
calculate the total number of brokers nb as 1 +

∑h
i=0 bi.

For the sake of the calculation, there is exactly one consumer in the system which is attached to a
border broker at the root of the broker tree. This consumer issued a location-dependent subscription.
We assume that the size of the set L of possible locations is 100 and that, with every possible step of
the client, the number of possible locations is multiplied by some factor s. In our case, we assume
s = 4. We assume that the user changes location every ∆ seconds.

Producers generate r notifications per second which are uniformly distributed over the set L of
possible locations.
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Figure 6.8: Sample scenario analyzed.

For every particular choice of values for these parameters, we calculate two values:

• Nf (t): the total number of messages generated in the network if flooding is used as basic
routing technique.

• Nn(t): the total number of messages (notifications and control messages) generated in the
network if our new algorithm for location-dependent filters is used.

We calculate these values for two different types of user movement: slow movement (∆ = 10s) and
fast movement (∆ = 1s).

As flooding basically defaults ����� to 
�����, in this case the user movement is unimportant in
the calculation of the total number of messages processed over time. Let n bb denote the number of
border brokers in the system serving producers. Due to the tree structure of the system, n bb = bh.
Since every local broker has p clients (producers) attached to it, the total number of producers n c in
the system calculates to nc = nbb · p. Every producer emits r notifications per second. Hence, the
number of notifications produced per second n ps = nc · r. Since every produced message has to
cross every link, we can calculate

Nf (t) = nps · nlinks · t

where, due to the tree structure, the number of links between brokers is n links = nb − 1.
The calculation of a similar formula for our algorithm depends on ∆. With ∆ = 1s and due to

the values for δs and δf , our algorithm must “buffer” one step of the movement graph per slow link,
i.e., the border broker of the consumer receives all notifications which are one step away from the
current location (i.e., a fraction of s/|L| of all produced notifications). Also, the broker following the
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Figure 6.9: Total number of messages generated for flooding and two scenarios of the new algorithm.
The values taken are δs = 600ms, δf = 10ms, b = 3, h = 4, p = 10, |L| = 100, r = 1,
s = 4, nb = 364, nbb = 243, nc = 2430, nps = 2430, nlinks = 363, nrest = 120.

border broker of the consumer must receive all notifications two steps away of the current consumer
location (i.e., a fraction of s2/|L| of all produced notifications). In the case ∆ = 10s the latter
buffering is not necessary. This is where our algorithm plays to its strength.

For ∆ = 10s we end up with

Nn(t) = nps · nlinks · s

|L| · t + nlinks · � t

10
�

where the first part of the sum corresponds to the restricted flooding (the fraction of s/|L| messages
crosses every link) and the second part corresponds to the control messages introduced by our al-
gorithm. Since control messages about location changes flood the network, their number must be
treated like in flooding. However, a new control message is generated only once in ∆ = 10s.

For ∆ = 1s, we must take into account that a fraction of s2/|L| notifications crosses the first
link from the border broker to the next broker in the network. Hence, we multiply every produced
message with this fraction together with the number of links starting from border brokers (n bb). To
this we add the number of remaining links nrest = nlinks − nbb times the original fraction of s/|L|
of produced messages. The second part of the sum is again to account for the control messages,
which flood the network once per second.

Nn(t) =
[
nps · nbb · s2

|L| + nrest · nps · s

|L|
] · t + t · nb

The results of our calculations are depicted in Figure 6.9 (note that the y axis has a logarithmic
scale). It shows that for the given settings and the two different scenarios the new algorithm imposes
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a smaller number of total messages than flooding. The graph confirms that a slower user movement
can save more messages.

6.4 Summary
In this chapter we presented an extended algorithm for location-dependent notification delivery that
optimizes the “basic” version as presented in Chapter 4. As we have shown there, some problems
of responsiveness versus completeness, i.e., the experienced blackout-periods when roaming, arise.
However, the algorithm presented in this chapter has the same basic characteristics as the algorithm
proposed in Chapter 4, but exploits information about the location and the possible movement of a
client in the future to implement a semantics of “restricted flooding.” Even more, the mechanism
tries to achieve the experienced responsiveness of “real” network flooding of producer data to clients.
On the other hand, it also tries to avoid the drawbacks of flooding, i.e., too much unwanted traffic
“floating” through the network. This is especially important for resource-limited devices that would
suffer significantly from too much data to filter and process locally.

To achieve this goals, we showed how an area of uncertainty of a client’s location and movement
can be exploited. By taking into account the whereabout of a client we can provide a setup of the
broker network such that the necessary time to adapt to an actual change of location is minimized
as if flooding was used. At the same time a movement graph is used to restrict this semantics of
flooding to those locations that are probable for a client to reach in due time. Hence, flooding is
limited to a certain area of the physical space.

Finally, we analyzed the proposed mechanism quantitatively in network settings, which are both,
conservative enough for a concrete scenario and diverse enough to present a sound approach to
identifying the factors that determine the potential of the algorithm. This way we have shown that a
significant amount of traffic can be saved when compared to the “naïve” solution of network flooding.

������������



7 Decoupling in Space and Time

Histories make men wise; poets, witty; the mathematics, subtile;
natural philosophy, deep; moral, grave; logic and rhetoric, able to contend.

Francis Bacon, English philosopher, essayist, and statesman (1561-1626)

7.1 Introduction

In this Chapter we address what in Section 2.2.4 was identified as being an important requirement
for mobile environments: decoupling in space and time.

In Chapter 5 we laid the foundations for decoupled operation in the context of mobility support
within the publish/subscribe infrastructure: buffering of notifications in the broker network to cater
for disconnection and – more importantly – reconnection of mobile clients. Thereby, two goals were
achieved: (a) the relocation functionality arbitrates the actual location of a client with respect to the
broker network and (b) the buffering scheme we introduced facilitates decoupling over periods of
disconnectedness and hence, time. The client does not have to be connected when a notification is
reaching the last hop in the infrastructure and should be delivered to the device.

However, in this chapter, we broaden the notion of decoupling. In the remainder of this chapter we
sketch how a mobile, roaming client can have access to location-dependent notifications that were
already delivered in the past when the client was not connected to the current environment. Thereby
we introduce an effective means to subscribe into the “past”. The underlying idea was introduced
in [CFH+03] and implementation details can be found in in [Gue04]. By making it possible to
access information that has already been delivered in the past, we also decouple consumers and
producers in space. The client does not have to be physically attached to a certain broker in order to
“receive” certain location-dependent information at the time the information is propagated through
the network. This introduces a certain degree of persistence of information, on the one hand, and
extends the notion of location-dependent information delivery beyond the boundaries of a single
broker as introduced in Chapter 6, on the other hand.

Problem statement. The observation we make is that a client needs a certain number of noti-
fications within the flow of data in order to bootstrap properly. This is common design practice in
static systems. But, an inherent assumption made in the design of static systems is that the partici-
pants of such a system, i.e., consumers and producers, are “online” constantly. Given this, a system
usually simply needs a certain settling time of the clients to reach a stable state of operation.

Contrary to the classical model of distributed systems, nomadic and mobile computing systems
introduce a significant level of client dynamics. Mobile clients join and leave an environment con-
stantly and rather unpredictably. Any new client then needs some amount of information to reini-
tialize or adapt to the new setting. Moreover, as the client usually is “roaming”, it stays only for a
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certain amount of time within the current environment. This poses the need to explore possibilities
for keeping the settling time for mobile clients as short as possible in order to allow for proper op-
eration at the current location. Even worse, it might be impossible for a client to simply “stop” and
wait for a while until the needed information is published as part of the information flow. A mobile
client might have to make decisions based on location-dependent data which has to be available as
soon as the client reaches a certain environment.

Example. Consider for instance the following scenario: a driver assistance application wants to
warn a driver when the crusing car approaches a red traffic light. Therefore, the application has
to access location-dependent data about the current status of the traffic light in the car’s vicinity.
However, a location-dependent subscription as specified in Chapter 4 is valid only within a certain
range. Thus, possibly, potentially interesting events concerning the traffic lights ahead of the car
are not delivered to the application because the range specifications do not match at the time the
notification is propagated through the network. Then, the information about the current status of
the traffic light is not accessible for the client until the next change of state is published (cf. also
Chapter 8). Moreover, the client does not have any control over when such state changes occur. A
state change and its announcement as notification is bound to some event, happening outside the
car application in the physical world (the traffic light changes to “green”). The question we want to
discuss next is how the car application in this scenario can provide the required functionality under
the given conditions.

Obviously, the application can leave the paradigm of publish/subscribe and resort to a traditional
request/reply interaction. Then we have to address some additional problems: as we have no anony-
mous and decoupled interaction anymore, a consumer needs to find whether its current location is
contained in the range of any traffic light nearby. In this case, an explicit handle is needed to contact
the traffic light or its proxy for requesting the current status. Although simple, querying external
sources conceptually requires an infrastructure that supports directory lookups and remote queries
(see for example the “cooltown project” [Lab03]). Moreover, the client is responsible for polling the
required information with all well-known consequences. Additionally, from the viewpoint of a traffic
light, the tightly-coupled nature of request/reply seems inferior to the anonymous, loosely-coupled
“publish” in a pub/sub system.

With a “traditional” pub/sub mechanism consumers need to update their subscriptions explicitly
and are only notified if they are inside the traffic light’s range at the time of the state change publi-
cation [NI97; TP00]. As a consequence, consumers are forced to wait until the next notification is
published, which leads to non-negligible delays and considerable initialization latency, which might
not be tolerable for mobile applications and erodes the reactivity of the pub/sub approach. An al-
ternative is to publish a client’s request for past events and route it according to existing filters to
subscribers with appropriate buffers; a flexible solution, although it introduces ordering and dupli-
cation problems.

Another technique is to let traffic lights publish their status (and not their status change) with a
pre-specified frequency [AFZ97]. In the worst case, applications need to wait a full update period.
Hence, the choice of the frequency is a crucial parameter that affects not only applications but also
resource usage. For instance, a mobile device with scarce resources, like low bandwidth wireless link
and limited power supply, might suffer from heavy traffic on the wireless link when the frequency of
broadcasts is too high.
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Figure 7.1: Bootstrapping latency

7.2 Subscription into the Past

The different approaches above illustrate a very simple ‘context detection’ that merely relies on the
last notification as a description of current state. In general, the kind of data necessary to bootstrap
an application differs widely, but in the following we concentrate on the class of applications that
commence normal operation after having seen a sequence of notifications. The essential idea to
diminish the bootstrap latency is to provide the consumer with a correct sequence of past notifications
as if it had subscribed earlier. Figure 7.1 basically depicts a comparison of the “traditional” case (a)
with our approach (b) of using past notifications in order to reduce bootstrapping latency.

The proper support by the infrastructure for mobility scenarios we propose in this chapter relies
on buffering published notifications at appropriate places in the broker network and to transparently
deliver them to newly subscribed consumers as required. Transparent delivery has the major ad-
vantage that it decouples clients and buffer management. Therefore, it allows for the integration of
various implementation strategies for the proposed caching functionality. This includes distributed
caches, proxies, peer lookup, or even centralized stores. For the client the actual reification of the
required functionality is opaque. The goal of this approach is simply to define an interface between
the roaming client and the buffering functionality. The concrete choice of a strategy is dependent
on the actual environment and usually subject to system management choices. However, in the next
section we will detail our approach of distributed caches in the broker network. Please note that
the availability of an arbitrary number of past notifications cannot be assured by the infrastructure,
which only mediates between applications and buffers. Consequently, in the worst case (e.g., not
enough notifications were published) our approach cannot fully avoid bootstrap latency. But on the
other hand, as we will show, in this case no additional overhead is added and the bootstrap latency
is not increased.

By accessing information which was already delivered but is stored within the broker network
applications can reach a consistent state and be set-up without listening for notification in the future.
By maintaining recent published notification within the broker network the bootstrapping phase may



7.2 Subscription into the Past 118

B1

B2

B3
B4

B5

subscribe("state", myLoc, history)

Buffer
"state"

Buffer
"state"

Buffer
"state"

"state"
Buffer

subscribe("state", anyLoc)
Traffic

Management

publish("state", location)

Figure 7.2: Conceptual setting: associated buffers distributed in the broker network

be sped-up significantly.

7.2.1 Basic idea
We have extended the subscription method in order to provide consumers/subscribers with the pos-
sibility to express their interest in happenings occurred in the past. This is indicated in Figure 7.2.
In this case, and in addition to the subscription filter that expresses their interest, they can specify a
number of n notifications they want to access from the past. As in the standard case, the pub/sub sys-
tem delivers the last n notifications that match the subscription to the subscriber through the ����&�
callback method as in normal operation. This makes opaque to the consumer that those received no-
tifications have already been delivered in the past. After sending the solicited notifications stemming
from the past, standard delivery of present and future notifications commence operation. Note that
the system cannot guarantee that it can deliver the total number of notifications specified in the sub-
scription. This depends on the individual policies for buffering notifications and what notifications
are available in the broker network. As a consequence, the client application should not assume that
the first n notifications in fact are part of the “past.”

7.2.2 Prerequisites
In order to keep track of past notifications, buffers are implemented within the broker network and
they are accessed by the different versions of the algorithm presented in the following. Conceptually,
a buffer is assumed to be simply a circular log of bounded length that stores notifications matching a
filter assigned to the buffer. Any broker in the network may install a history buffer as a cache of the
latest notifications forwarded through this broker. In connection with a specific subscription other
temporary buffers may be created as well. If we want to ensure a minimum number of notifications
available for replay, border brokers have to buffer this number of notifications published by any
locally attached producer. In general, any broker may maintain history buffers to improve data
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placement localities, though buffers only listen to passing notifications and are empty before the first
subscription initiates delivery.

Notifications travel through the broker network from the producers to the consumers along deliv-
ery paths. In the following we refer to the publishing direction as being directed downstream, while
subscriptions and some administrative messages are directed upstream towards the producer. The
replay message is of administrative kind, contains a set of notifications and is aimed downstream.
Clients of the pub/sub service need not to expose any unique identifiers, but the pair (C, F ) of a
consumer and its issued subscription filter is presupposed to be unique; at least a unique ID can be
assigned by the access broker. As introduced before in Section 4.2.1 on Page 56, filter F above is
divided into an application-specific payload and the location-dependent envelope. For clarity und
simplicity, we ommit this distinction here and simply use F as description of a filter.

7.2.3 Algorithm Outline

The following basic approach to subscribing with buffer replay extends the subscription process
available in the REBECA pub/sub service. A subscription can now also include past notifications; the
routing configuration is updated as before, but delivery of new notification is postponed; matching
buffered notifications are fetched from the network; and finally, the fetched data has to be delivered
before new notifications.

Issued subscriptions have to contain the number of past notifications that are to be delivered,
according to the semantics given in Section 7.2.1. For the traffic light example, based on the sub-
scriptions from the car and the traffic management control, two delivery paths through the broker
network are established, as depicted in Figure 7.2. Whereby the delivery path to traffic management
control is assumed to be static (hence, no number of past notifications is needed) and the wireless
link between the car and broker B2 is dynamic and ad-hoc. Here, subscriptions into the past are
needed and therefore a number of past notifications is given. In Figure 7.2 denoted as history. As
soon as the subscription (C, F, history) is issued, a delivery path between producer and consumer
({B5 → B4 → B3 → B2} in the example) will be established.

In this simple example setting the inner broker B3 plays a special role. B3 can identify the simi-
larity between the two subscriptions issued for the state of the traffic light. As being on the junction
between the two delivery paths, once a new subscription from B 2 arrives, by applying covering
and merging techniques (cf. Section 3.3 for details) or by a explicit search of the routing table, the
“larger” subscription with 
����� as location specification is discovered. Thus, presumably, B 3

already has a well-filled history buffer for the traffic light in question.
Immediately before a new link is activated to start delivery of passing notifications, the buffer-

fetching functionality is called. The junction broker B 3 in our example selects as many of the most
recent notifications from a locally kept history as necessary to meet the subscription request. These
are sent as a replay message downstream the new link towards the consumer’s border broker B 2. We
will later suggest more advanced strategies that include history buffers at other brokers.

The border broker unpacks and delivers the replay notifications to the consumer before delivering
new notifications. In general, new notifications must be delayed until the replay message is sent
in order to deliver the buffered notifications first. In this simple approach, however, the replay is
prepared only at the nearest branch on the delivery path, so new notifications cannot overtake the
replay. However, unfortunately, the desired number of past notifications may not be available at the
junction broker. Appropriate extensions to cater for this case are proposed later in this chapter.

The algorithm presented in Figure 7.3 sketches the core algorithm common to all presented ex-
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tensions made in the following paragraphs. Figure 7.4 details necessary helper methods for com-
pleteness. For all extensions given below, only two methods need to be changed as it is presented in
Figure 7.5. This figure particularly shows the refinements for the simplest case as outlined above.

In order to provide a framework for the most general case, the algorithm explicitly blocks delivery
at the border broker in case new notifications arrive before the replay. For the basic version, as
described above, this is not necessary. The timeout stops waiting for replays and starts delivering
new notifications if not enough replay data was received in time; this is only necessary if multiple
replays are expected.

7.2.4 Algorithm

The algorithm presented in Sect. 7.2.3 is naïve in its restriction to search only for notifications at the
nearest buffer and therefore we extended it for practical relevance. One striking idea is to use more
than one buffer for fulfilling a request for past notifications. But, if more buffers are considered for
preparing the replay, two problems arise. First, new notifications and replays are concurrent and must
be ordered correctly. And second, multiple replays may cover different producers so that reorder-
ing is not possible without identifying producers and individual notifications (a strong requirement
we deliberately avoided so far). In the next subsections we suggest a number of improvements
that search for more buffered notifications, cope with concurrent new notifications, join buffers of
multiple producers, and reduce traffic by using sequence numbers.

7.2.4.1 Largest History Buffer

We return to the example given in Sect. 7.2.3 and specify the subscription process in more detail.
For now assume that every broker has no more than one link with a matching advertisement. In the

basic approach the reduction of bootstrapping time for a consumer depends on the size of the history
buffer of the first broker that is discovered on an existing delivery path. Consider for instance the
network as presented in Figure 7.2 where the mobile client issues a subscription and this subscription
involving past notifications depends on the broker B 3.

In order to provide a better solution the first extension includes history buffers at other upstream
brokers: another broker (B5) further upstream may have a larger buffer that could be used instead.
However, new notifications may be in transit while the first broker (B 3) requests a replay of B5’s
history buffer. Thus, the first broker (B3) needs to hold notifications for the consumer, or its border
broker (B2), until a replay message is received. The replay needs to be shortened by the number
of held notifications to avoid duplicating notifications. After the replay content is passed to the
consumer, held notifications are delivered.

By including the contents of buffers at other brokers, potentially a larger fragment of recent history
can be accessed. This assumes however, that buffers have different sizes and that it is possible to find
a larger buffer in brokers upstream. In oder to provide a certain completeness, in some scenarios we
even can require the border broker of a producer to maintain a reasonable large buffer. This way we
can guarentee that a client at least can access some of the past events at all times. In this case, the
reactiveness of this approach is at least as good as without buffering at all, which is the case if the
subscription is the first of its kind in the system and must setup the complete delivery path between
consumer and producer, and better in the average case where buffers are already set up.
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/∗∗ upon receiving subscription (C, F ) for past p events
∗ via link LN ∗/

void receiveSub(C, F, p, LN ) {
if (localClients.contains(C)) {

routeTable.setHold(C, F )
buffers.newBuffer(C, F, p) // create temp. buffer for replay

}
if (routeTable.includes(C, F ) {

replay(C, F, LN , p) // prepare replay message and send
} else {

routeTable.add(C, F, LN )
propagate(C, F, p, LN ) // to all neighbor brokers with

} // matching advertisements except LN

}

/∗∗ upon receiving notification n from Bj ∗/
void receiveNotif(n,Bj) {

routeTable.route(n)
historyBuffers.append(n)
for(∀b ∈buffers with matching assigned F )

b.append(n)
}

/∗∗ upon receiving replay(C, F, [n1, . . . , nm]) ∗/
void receiveReplay(C, F, [n1, . . . , nm]) {

if (buffer.exists(C, F )) { // i.e. this is a border broker
b := buffers.get(C, F )
b.prepend([n1, . . . , nm])
if(b is completely filled) {

deliver b
buffers.remove(C, F )
routeTable.clearHold(C, F )

}
} else {

routeTable.route(C, F, [n1, . . . , nm]) // route replay towards consumer
} // according to unique (C, F )

}

/∗∗ upon timeout of buffer (C, F ) ∗/
void receiveTimeOut(C, F ){

buffers.get(C, F ).deliver()
buffers.remove(C, F )

}

Figure 7.3: Basic algorithm for subscriptions into the past.
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class Buffer {
F, C, p // filter expression, consumer, past
i, d, store // new notifications, delivered

// ...

void append(n) {
if (F .matches(n)) {

i := i + 1
store.append(n)
if (store.length() >= p)

this.deliver()
}

}

void prepend([n1, . . . , nm]) {
store.prepend([n1, . . . , nm])
if (store.length() >= p) {

this.deliver()
delivered := true }

}

void deliver() {
// deliver buffer contents to C
// ...
delivered := true
routeTable.clearHold(C, F )

}

boolean hasBeenDelivered() {
return delivered

}
}

Figure 7.4: Additional methods for the algorithm in Figure 7.3
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void replay(C, F, LN , p) {
b := historyBuffers.get(C, F )
if (b.length > 0) {

b.sendReplay(C, F, p)
}

}

void propagate(C, F, p, LN ) {
for (∀n ∈ localClients\{LN} ) {

requestReplay(n, C, F, p)
}

}

Figure 7.5: Specification and refinements of the ���	
� and ����
�
�� methods.

7.2.4.2 Merged Histories

Looking for a broker in the delivery path with enough notifications (as it was proposed above) in-
volves communication costs and time. Considering that during this searching time new notifications
may arrive implies that fewer notifications need to be specially delivered from other brokers. This
leads to the next modification of the algorithm: All queried brokers send as much of their history
buffer as is available in the hope, that enough notifications were issued in the meantime to fulfill the
requested number of notifications.

Coming back to the example, the first broker B3 might decide to stop waiting for history replays
and start delivering held notifications. Another broker B 4 between B3 and B5 might have a larger
history than B3 but not sufficiently large to satisfy the requested number of notifications. However,
it could send a replay anyway increasing the probability that B 3 is able to fulfill the request based
on newly received notifications plus received replays so far. B 3 needs to keep track of outstanding
replay requests unless there is a timeout defined.

In order to merge replays with the local history buffer, B 3 needs to reduce the received replay
by the number of notifications in its own history buffer to avoid duplicates. Since sender FIFO
is guaranteed, all replays are aligned to the beginning of the first broker’s (B 3) buffer. In other
words, the most recent notifications are present in B3’s buffer as well as in the replay. Figure 7.6
shows the content of two brokers’ history buffers, B4 and B3, with administrative messages and a
new notification “g” is being published by the producer. At time t + 1, B 3 receives a subscription
requesting four past notifications while B4 receives notification “g”. B3 allocates a new buffer large
enough and copies the content of the history buffer to this new buffer. Next, at t + 2, B 4 forwards
“g” to B3 while B3 requests a replay of four notifications from B4. Notification “g” is added to the
new buffer at B3. In t + 3 the replay is sent to B3. It can be seen that B3’s buffer contains the same
leftmost (most recent) notifications as the replay message. The result after removing the duplicate
notifications is shown at t + 4.

With this modification, the bootstrapping delay of a consumer is guaranteed to be no larger than
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t B4 B3

t + 1
notify(g)−→ f e d c f e

sub(filter,4)←−
t + 2 g f e d

notify(g)−→
fetch(4)←−

f e εε

t + 3 g f e d
replay(g,f,e,d)−→ g f e ε

t + 4 g f e d g f e d

Figure 7.6: History buffers, messages and alignment of replay contents with history buffer contents

without recent history in the worst and better in the average case.

7.2.5 Further Extension for Multiple Producer Scenarios

In this subsection we present two further extensions for scenarios with more than one matching
producer per client subscription. Obviously, scenarios not covered by our simple example above.

7.2.5.1 Junctions

Up to this point we have assumed a single matching advertisement per subscription, which we will
relax now. Broker IDs help to distinguish notification sources and allow elimination of duplicates
(notice that the simple alignment as depicted in Fig. 7.6 does not hold anymore).

Junction brokers are brokers that are connected to more than one peer with matching advertise-
ments. Upon a replay request, junction brokers should query all peers in order to get a good esti-
mation of past notifications. In general, a specific ordering cannot be assumed between replays of
different producers. Replay processing may be based on first-come-first-serve, random interleaving,
or timestamp ordering if logical or global-time clocks are presupposed. However, only replays from
the junction broker’s own history buffer will have the order of notifications the consumer would have
observed if it were subscribed earlier.

When receiving replays from multiple brokers they are not guaranteed to be aligned with the local
history buffer anymore thus removing duplicates is more difficult. Therefore, globally unique broker
IDs must be added to a notification envelope when it is published. Since the ordering of notifications
relative to the source is fixed, replays will include the same most recent notifications which allows
to drop as many notifications from a replay as already present in the local buffer for this source.
Notifications are always stored in the history buffer with the complete envelope.

7.2.5.2 Sequences

Although the algorithm and the extension presented above eliminates duplicates before delivering
notifications to the consumer, notifications may be sent multiple times over the network since a very
recent notification will be included in every replay. Sequence numbers can be used to shift the task
to detect and eliminate duplicates from the border broker to the infrastructure.

In the same way border brokers connected to producers add their broker ID to the notification
envelope, a sequence number is added. Such sequence numbers can be leveraged to eliminate du-
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plicate sending. Requests for history replays include a list of tuples (b, s) with b as broker ID the
producer is connected to and s as the sequence number of the oldest notification from this producer
still contained in the local history buffer. As an additional benefit, the requested number of replay
notifications can be reduced by the number of notifications found in the local history buffer that
match the request.

7.2.6 Putting it All Together
In this section we informally describe an algorithm that takes the above said into account. Hence,
three new message types are introduced for inter-broker communication: fetchHistory(expression,
list, #past notifications), replay(), and expect(tagname).

Handle Subscription Message Upon receiving a subscription including past notifications p,
a broker checks first if it is the responsible border broker for the issuing consumer. A buffer H with
size p is created to assemble an estimation of past notifications, a counter r for outstanding requests,
and a map L for lowest sequence numbers are allocated. Delivery for the requesting consumer
according to this subscription is set to hold.

If the current border broker does not carry the requested subscription, the request is sent to all
connected brokers that have sent a matching advertisement, hence are upstream. r is incremented
for each request.

If the broker already has a matching subscription and a local history buffer matching the subscrip-
tion expression exists, notifications are copied to H until the end is reached or the request is fulfilled.
At the same time L is filled with lowest sequence numbers per originating broker. The number of
expected notifications is decreased with each notification.

If more past notifications are needed, a fetchHistory message is sent to all connected brokers
with matching advertisements and r is incremented for every request. If more than one broker is
contacted, a junction marker is set.

Any inner broker that does not already have a matching subscription re-sends the subscription
request to all upstream brokers. For each request an expect message is sent back downstream and a
junction marker if more than one broker is contacted. In addition, an empty replay message is sent
downstream.

If a non-border broker has a matching subscription, a local buffer H ′ with size p′ is allocated. The
broker scans the local history buffer looking for notifications that have a lower sequence number
than indicated in the request. If it is the case then it copies them to H ′ and updates the number
of outstanding notifications and the sequence number list L. All notifications in H ′ are included
in a replay message and sent downstream. Whenever the number of outstanding past notifications
is non-zero, corresponding fetchHistory messages using L ′ are sent to all connected brokers that
have matching advertisements. expect messages are sent as described in the case when no matching
subscription was found. Buffer H ′ is removed.

Handle fetchHistory Message A non-border broker handles fetchHistory messages similar to
subscribe messages.
A border broker should never receive a fetchHistory message.

Handle Notification Upon receiving a matching notification for a consumer that is set to hold,
a border broker copies it to the local history buffer and delivers it to all other consumers that are not
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set to hold. In addition, it is queued in H and the number of expected notifications is decreased. If
the number of notifications is zero, all queued notifications are delivered and all helper structures are
removed. The hold marker is removed.

A non-border broker transmits the notification downstream.

Handle Replay Message Upon receiving a replay message, a border broker appends all in-
cluded notifications to H and r is decremented. If it has been signalled before that a junction has
been encountered, ordering of notifications from different producers cannot be reconstructed after
this point. The border broker could try to order notifications from beyond the junction based on the
notification’s production timestamps.

If no replays are outstanding, all notifications from H are delivered to the consumer and the hold
marker as well as all helper structures H, L, r are removed.

An inner broker relays the replay downstream.

Handle Expect Message Upon receiving an expect message, the border broker increases r.
An included junction marker is stored. A non-border broker relays an expect message downstream.

7.2.7 Considering the Time Dimension

Subscriptions into the past can be also specified with a time bound. In this case, a subscription
into the past asks for notifications that have been published m time units in the past (relative to
subscription time). A first approximation could be achieved by synchronizing the clocks of all
border brokers. In this way, at publishing-time border brokers attach a timestamp to notifications in
order to represent the time when they have entered into the pub/sub system.

At subscription-time the border broker sets the time bound by simply subtracting the relative
bound of the subscription from its local, synchronized time. This time reference is then used by the
algorithm to search in the broker network for matching notifications with a newer timestamp.

Moreover, a combination of number of notifications and time into the past could also be useful,
i.e., the last ten notifications within the last five minutes. This combination constrains the search
in the buffers of the broker network. That means that there are two criteria to stop the search: (a)
once the number of notifications within the reference achieves the solicited number, or (b) once a
timestamp older than the reference is found.

However, we explicitly do not want to discuss problems involved by using time in distributed
systems. We consider time specification as a convenient means to restrict the search space for past
notifications. In the sense as time is used as part of the proposed approach it takes into account that
a mobile client hardly can make any assumptions about concrete timing in changing and unknown
environments. As we explicitly decouple consumer and producer in space and time, control over
publishing of events solely is bound to the producer. Therefore, any expectation of a client that time
here refers to an exact and global clock should be avoided.

7.2.8 Discussion

At the beginning of this chapter, in Section 7.1, we introduced the simple example of a traffic light,
which changed its state to “red”just by a fraction of the second before we entered its range. There,
we already characterized possible solutions to the problem of access to “historic” data. Here, we
revisit and discuss them in the light of the proposed algorithm:
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• Request/reply. We can require the producer and consumer to share a common knowledge
about addresses such that we can do traditional request/reply between car and traffic light or
its proxy somewhere. Besides abandoning the publish/subscribe paradigm and the additional
need for an orthogonal infrastructure, we might run into the same problems regarding in-
transit messages, lost messages, and duplicates as we have discussed in Section 5.5.2. There,
we analyzed the shortcomings of request/reply based solutions for the relocation of mobile
clients. Similar arguments against pull-based mechanisms apply here.

• Multicast. We can require the system to maintain location-dependent multicast groups. Al-
though this approach provides for decoupling in space, the decoupling in time remains un-
solved.

• Frequent re-publishing. We can require a producer of events to re-publish information fre-
quently just in case someone is interested and just entered the range of this information. This
solution is dependent on many factors and requires a sophisticated system management for
tuning and optimization. It remains unclear how such an approach is applicable to producers
that are not under the control of a centralized management instance. Please note that every
(mobile) client also may be a producer of data interesting to other clients.

• Flooding and client-side filtering. We can require the infrastructure to flood information and
clients to do client-side filtering. However, we discussed the drawbacks of this solution in great
detail in Chapter 6. A resource-constraint device might suffer significantly. Thus, client-side
filtering should be avoided.

• Subscriptions “in-the-past”. We can require that a client adheres to a self-chosen movement
graph. Then it is possible for this application to pre-subscribe to important information at fu-
ture locations. However, the application itself is responsible for appropriate subscriptions
to data from future locations, filtering out unnecessary information, caching informations
for future locations, and unsubscribing to old locations. We proposed a similar approach
in [FGHZ03], shifting the responsibilities mentioned above into the infrastructure. Conceptu-
ally seen as an extension to the approach presented in Chapter 6. However, no decoupling in
time is achieved whenever a client acts “spontaneously”, e.g., by not adhering to the chosen
course of action, or by issuing new subscriptions. Then no past notifications are available and
conventional publish/subscribe semantics apply.

Subscriptions “into-the-past”. Finally, we can require that the infrastructure offers a means
of buffering as detailed in this chapter. Besides the non-negligible complexity induced for the bro-
ker network we believe this solution to be the most flexible and complete. Assuming that clients
can commence operation after having consumed a reasonably limited number of notifications for
adaptation to the new environment, cache sizes can be rather small. Additionally, for pervasive en-
vironments producers can be made “aware” of the existence of client dynamics. Thus, to keep the
impact on the overall system small, producers can weave “state digests” into the normal flow of
information. Thereby, the number of incremental updates a potential client has to listen to is kept
limited.

Even then, we cannot neglect the possibility of cache misses. As countermeasure, throughout
the last sections, we devised a number of optimizations to the basic algorithm shown in Figure 7.3.
We sketched several extensions trying to fulfill a client’s request for past notification with growing
sophistication. But, with every extension the complexity of the overall algorithm increases. Thus,
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the optimal configuration of the broker network obviously is a setting where needed past notifications
“always” are contained in a buffer nearby.

Unfortunately, a concrete analysis of the additional message complexity for the case of too few
notifications in the nearest buffer is extremely hard to conduct. In dynamic environments the prob-
ability for such a “cache miss” depends on a number of diverse and often application-dependent
factors:

• Location-dependent subscriptions. The class of subscription we devised the algorithm for are
context-dependent subscriptions, and here especially location-dependent subscriptions. Obvi-
ously, for scenarios where clients can be assumed to subscribe to certain information, e.g., the
traffic conditions in the vicinity in a car scenario, the probability that another client at the same
border broker has already subscribed to the same information is very high. Thus, the needed
recent notifications probably are already buffered close by. Consequently, the reactiveness is
high and the probability for a cache miss low.

• Border brokers. In heterogeneous system settings, we have to deal with the situation that two
clients at the same location access the system via different border brokers. This situation might
occur when different connection technologies are in use. For instance, a client is connected
via a local networking technology, e.g., WLAN, while a second client uses a GSM phone.
Then, the delivery paths for those two clients might be completely different. Accordingly, the
probabilities for cache misses and the mean distance to a sufficiently large buffer can vary
greatly.

• Inherent adaptive behavior. We assume the broker network explicitly to be rich of resources.
Nevertheless, the experienced quality of service is limited by the available hardware, e.g., net-
work bandwidth and computational power. Thus, with a growing number of clients the system
has to adapt its provided services. For instance, at crowded locations we have to assume a
strong heterogeneity of applications in use and therefore the number of different subscriptions
is high. The available resources have to be divided in order to accommodate to this situation.
Although not explicitly detailed above in the algorithm, we assume the available resources to
be distributed evenly among the subscriptions in the system. As every subscription has an as-
sociated cache, cache sizes may vary over time and broker. In a high load situation cache sizes
are getting smaller in order to serve more clients. Theoretically, the probability of a cache miss
for a new client at the nearest broker is higher. On the other hand, the diversity of subscrip-
tions is larger, the larger the number of clients gets. Hence, the probability that another client
has issued a similar subscription is larger, too. Even if a cache miss occurs, we can assume a
very high probability that a broker upstream nearby the first broker (with a significantly lower
load) has a sufficient number of past notifications available. This way, again, the additional
complexity of our algorithm is reduced significantly.

Evaluation of the factors discussed above open up a wide field for experimentation and currently
are covered only partially. Therefore, a complete coverage is left for future work.

7.3 Summary
This chapter is motivated by the use of publish/subscribe notification services in pervasive settings
where mobility plays a prime role. In order to adapt to context changes, moving clients require an
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initialization phase to commence normal operation from a valid state. Without proper countermea-
sures in the infrastructure the latency of a client’s bootstrapping phase has the potential to severely
impair the usability of the publish/subscribe paradigm in pervasive scenarios. Due to the reactive
nature of event dissemination, a client has to wait until enough information is published to resume
operation. The main problem we identified in this chapter is that the “settling time” of clients after
startup, issuing new subscriptions, or location changes is bounded by the time a roaming client stays
within reach of a single environment. Therefore, latency can become a major problem. To stress
this point we introduced a simple example illustrating the case where a client (a driver assistance
application in a car) must have access to certain data (the status of the traffic lights ahead) in order
to operate properly. For this example we argued that the client cannot simply “stop” and wait until
the next status change of a traffic light in the vicinity is observed and the car can commence opera-
tion. In this sense, the traditional publish/subscribe paradigm simply falls short. For comparison we
discussed viable alternatives to publish/subscribe and identified serious weaknesses there, too.

The problems mentioned above motivate our approach, with which clients have means to access
data already propagated through the broker network in the recent past. Thereby, we introduce de-
coupling not only in space but also in time. We establish additional buffers in the broker network
of a distributed notification service. Additionally, we devised a set of possible search and consoli-
dation strategies tailored to minimize the bootstrapping latency experienced by clients connected to
the network. Matching recent notifications are looked for in buffers on the delivery paths upstream
towards the producers. Unfortunately, for the clients this included a change of interface between
applications and notification service. We extended the ���������method by adding the possibility
to specify how “far” in the past the system should go to start delivering notifications. This can be
done by giving a number of recent notifications to replay for the client.

The approach proposed in this chapter seeks to bridge the divide between the algorithms devised
in Chapter 5 and Chapter 6. Mobility support, as introduced in Chapter 5, decouples consumer
and producer of non-context-dependent data, e.g., legacy applications, in space and time. The main
purpose in pervasive environments is to bridge phases of disconnectedness and arbitrate the actual
location of a client for notification delivery. Both fosters transparency of space and time. Chapter 6,
on the other hand, uses explicit knowledge about the whereabout of clients to maximize respon-
siveness and minimize the bootstrapping latency for clients moving within the borders of a single
border broker. The algorithm presented in this chapter combines the main characteristics of both
approaches. Roaming clients, i.e., clients connecting to more than one broker over time, can have
access to location-dependent context data in a transparent way. Additionally, by accessing past no-
tification a client can be initialized faster, hence responsiveness is improved. The support of our
infrastructure for both characteristics appropriately caters for the required decoupling of space and
time as identified in Section 2.2.4 in Requirement 2.2.8 on Page 26.

������������
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8 A Structured Approach to the
Development of Context-Aware
Applications

The art of being wise is
the art of knowing what to overlook.

William James, philosopher and psychologist (1842-1910)

8.1 Introduction

In the previous chapters we have detailed the necessary extensions to a notification service as founda-
tion for the deployment of mobile, event-driven applications in a nomadic computing environment.
Thus, having those in place, we devote this chapter to a structured approach for the development of
context-aware applications. The model is based on a reactive application model using finite state
machines as primary abstraction.

Finite state machines perfectly model the core of context-awareness: adaptivity to changes in
the surrounding. Whenever a change in the surrounding occurs that is interesting for the thread of
control of a context-aware application, this can be expressed in terms of a state change in a finite state
machine. In our proposed model, any change of state can be accompanied with a so-called action,
i.e., some action is taken in order to react or respond to the detected change of context. Hence, the
specification of applications is control-oriented as defined, for example, by Papadopoulos [PA98].

But, control-oriented specification of applications as finite state machines is only one side of the
coin. The other side is the gap between the level of semantics an application is specified at, i.e.,
specification of tasks or goals to reach, and the data-driven, controller-less mode of operation of
a nomadic computing system. In the nomadic computing system model, control of resources and
data-flow is fully distributed and decentralized. Thus the regulation through a central controller, like
a system manager, cannot be assumed. Interaction and coordination of producers and consumers of
data is spontaneous, ad-hoc, and most importantly, data-centric. Due to the volatile bindings of data
producers and mobile context-aware applications, the content of a data item is the distinguishing
factor rather than the identity of its producer. We will discuss this issue in greater detail throughout
the following Section 8.2.

Therefore, the main challenge we face in this chapter is to find a proper mechanism to transform
a control-oriented, task-driven description of applications into a proper set of subscriptions for data
items mediated by the distributed notification service. To develop such a mechanism is the central
concern of the Section 8.3. Finally, we summarize the findings of this chapter in the concluding
Section 8.4.
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Figure 8.1: General design process

8.2 Control-driven Applications and Data-driven
Environments

In theory, every single piece of context data can contribute to the execution of a context-aware
application. In practice, however, information that is considered useful for the use in applications
must be somehow measured or sensed in the physical world (cf. Chapter 2).

But, in a nomadic computing environment direct and exclusive control of resources in the sur-
roundings is not within reach of a mobile context-aware application. Be it to decouple and anonymize
consumers and producers, security reasons, or most likely, to make resources shareable, a roaming
device cannot expect to access resources directly. It has to rely on the infrastructure for facilitating
access to resources indirectly. Hence, from the application’s point of view, assumptions about a con-
crete source of data, what syntax and semantics data at the current location has, or how and when
data is acquired, are hard to make. A designer of a context-aware application thus has to resort to
a more flexible approach. The specification of applications is done on a level of abstraction where
reactive description of what goal to reach and how to react to context changes is favored over han-
dling concrete instances of data directly. This is the inherent volatility we face in mobile systems.
However, a significant “gap” of semantics between the producers of raw data and the applications as
consumers of high-level input is introduced that must be bridged outside the mobile, context-aware
application. As we argued above, the specification of coordination and interaction at designtime typ-
ically should be control-driven, as defined, for example, in [PA98] (see also Subsection 2.2.3.3 on
Page 20). Moreover, for an application it is necessary to react to what happened, e.g., the presence of
someone in a room where nobody should be, opposed to the how this fact has been acquired, e.g., by
a tag-reader, an ultrasonic positioning system, or a surveillance-camera. This is necessary because
of the volatile and changing environments an application might be deployed in at runtime. In this
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respect, we require a reasonable separation of goal-oriented specification and actual computational
concerns introduced by the concrete surroundings.

As introduced in Section 2.2.4, by definition, it is the task of an infrastructure to mediate between
context producers and consumers. Usually, part of an application’s context is “living” in the physical
world and every state change of an observed object is reported as event in the infrastructure. Thus,
interaction must be data-driven, as neither infrastructure, nor applications have control over when an
event occurs in the physical world. Additionally, applications are not directly aware of data sources
and vice versa; they are decoupled by the infrastructure. Both parties must rely on the infrastructure
to fulfill their needs (cf. Fig. 4.1 on Page 54 in Chapter 4): a producer of events simply publishes
events into the infrastructure for multiplexing. Multiplexing here denotes the functionality of for-
warding data to interested third parties for consumption. On the other hand, a consumer specifies the
generic need for input as standing request, using the infrastructure for composition of matching input
for the application. The term composition hereby refers to the generation of new notifications out
of one or more data items which are consumed in the process, ideally reducing the overall number
of notifications in the network. But, to fulfill the need of applications for application-level input,
data must be transformed into data on another semantic level, i.e., it must be interpreted to match an
application’s need. For example, an RFID tag held in front of a tag reader might be reported as “tag
reader event.” The infrastructure is doing the necessary multiplexing of the event, i.e., it forwards
it towards interested third parties according to the notification’s content and stated interests. Here,
interaction is data-driven. The same content might then be used within a “smart conference room”
application to determine who is in the room, as well as for a health monitoring application of one
of the participants. The original “tag-reader event” might have undergone interpretations to map it
onto an “id number” for the conference room application and a “patient id” for the health monitoring
application, accordingly.

However, at the junction of mobile devices roaming in the physical world and the infrastruc-
ture fostering coordination for applications and distribution of context, we have to find a model of
context-handling that is bridging the “gap” between the data-driven nature of data acquisition and
the control-driven specification of context-dependent applications. At the same time it must also be
suitable for implementation within the infrastructure (cf. Section 8.3).

The next section will introduce a formal model which takes into account the capabilities and
characteristics of a notification service in order to build context-dependent applications. We will
then show how this model can be applied to the design of context-aware applications by taking
a strongly simplified example from the domain of health care, where we started to explore this
approach [Rei02].

8.3 A Model of Context and Context-Handling in
Notification Services

Throughout the last section, we have motivated the need for a model of context-handling, bridging
between control-driven specification of applications and the data-driven nature of the underlying
infrastructure using a notification service as an efficient intermediary. The downside of this choice
is that it does not come without costs. We have to tailor the model for handling external context in
a way it is implementable by means of a distributed notification service. Therefore, in Section 8.3.2
and 8.3.3 two abstractions are introduced, which are directly deployable in a notification service.
The first abstraction we introduce is Parameter, which is classifying event notifications according
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to the raw data they contain. Parameters thereby constitute the most basic building block for the
generation of context information. The second abstraction is Interpretation, a means with which
new data (and hence new notifications, cf. Sect. 8.3.3) is generated by consuming and interpreting
some input data.

The intended use within our model is to build up hierarchies of interpretations (cf. Fig. 8.2),
thereby generating high-level context in a finite number of steps from low-level parameter data. The
abstractions used within the notification service to implement interpretations are event composition
and event aggregation.

The whole model of context-handling is constructed around those building blocks to keep it ap-
plicable together with a notification service. The result is an overall design process for context
specification and subsequently context-handling as shown in Fig. 8.1 and detailed throughout the
next subsections:

Application design. At designtime we require an application to be specified in terms of seman-
tic meaning, i.e., by specifying how to react to context changes. For the specification of reactive
systems, design paradigms for control-oriented behavior, e.g., statecharts [HG97; HN96] and the
state pattern [GHJV95], were introduced. Taking this as a starting point, in Section 8.3.4 and Sec-
tion 8.3.5, we show how at designtime applications can be decomposed along the lines of parameter
and interpretation abstractions.

Runtime. At runtime, an application is deployed using the primitives offered by using a noti-
fication service. Each “request” for parameter data can directly be expressed by a corresponding
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subscription issued, which matches data published by producers. Event compositors take the role
of interpretations. Their role at runtime is twofold: (i) they subscribe to data matching their input
specification. This can be parameters, but also output of other event compositors (cf. Fig. 8.2),
thereby building up the data-flow eventually providing context to applications; and (ii) by typically
consuming more notifications than they produce, they provide means for external filtering and ag-
gregation of data, preventing a resource limited device from being flooded by too much data to filter
and process locally. An especially important aspect for mobile devices or appliances as we discussed
in Section 2.2.4.3 and formulated in Requirement 2.2.10 on Page 27.

8.3.1 Introducing a Running Example

Throughout the following sections, we want to illustrate our model by modeling an extremely sim-
plified version of a Mobile Personal Health Monitor (MobiHealth) as it was originally designed and
implemented using a first version of the model as presented in [Rei02]. The purpose of the example
system is to monitor the health state of a mobile user and to set-off an automated emergency alarm
whenever some crucial health state becomes critical. The original target group of users were el-
derly people with cardiac problems, where fainting, accompanied by a drop in blood pressure, might
indicate a critical situation, triggering some emergency measures.

Nonetheless, the model we introduce is not restricted to this application, but is applicable to other
application domains and examples as well.

For the sake of our example, the goal we eventually want to achieve at designtime is to identify
data items corresponding to the context hierarchy as shown in Figure 8.3(a) and map them to context
data which is then used to trigger state changes within the application as it is shown in Figure 8.3(b)
at runtime.

Obviously, raw data, such as location or environmental temperature, is provided externally by
sensors embedded into the surrounding physical space. We show how this data can be stepwise
transformed into specific context information on a higher semantic level. Such context information
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then is used to determine state changes and appropriate actions on the application level.
In the following sections, at the same time we introduce the formal model and show its application

by relating it to our example of the personal health monitoring system.

8.3.2 Parameters
When modeling context, the most basic input coming into the system is raw data, usually produced
by hardware sensors and corresponding driver software. In order to move away from the details of
dealing with different hardware platforms, software frameworks like the ContextToolkit [SDA99]
are put in place to “wrap” low-level details and foster re-usability and flexibility. Instead of pro-
gramming against a particular hardware controller, software is developed, using a unified layer of
interfaces and well-defined data formats. For example, temperature sensor A measures environ-
mental temperature in “degrees Centigrade,” whereas temperature sensor B measures the same data
using “degrees Fahrenheit.” An appropriate wrapper architecture can make both sensors conform
to a well-known data definition ������
����. Usually, for data obtained by measurement in the
physical space, a physical unit is used, like in the example above “degrees Centigrade.”

Multiplexing. Instances of parameters are injected into the system by producers of data, e.g.,
a sensor periodically sending the current temperature reading. Any producer publishes data as a
sequence of notifications via its associated border broker. The broker forwards the notifications
towards interested third parties, like our context-aware application under consideration, according
to a table of subscriptions matching the content of the notification. This way, data is propagated
through the network of event brokers towards consumers. As the notification is duplicated every
time data is forwarded in more than one direction at a time, the routing network serves its function
as a multiplexer of data.

Within our formal model, all available parameters constitute the global set P. A parameter serves
as the smallest building block of context-dependent systems. Goal of the design process is to identify
the subset PApp of parameters used within a context-aware application App. Deployed at runtime,
parameters can be expressed as subscriptions in the notification service.

For practical reasons, we distinguish between single-valued and multi-valued parameters. For
each single-valued parameter a domain and a unit are defined.

Thus, a single-valued parameter psv is defined as a triple, with a domain D, a value v, and a unit
u as its elements:

psv = (D, v, u), v ∈ D

A multi-valued parameter pmv is defined as a set of k single-valued parameters psv:

pmv =
⋃

0≤j<k

{psvj}, k ≥ 1

Obviously, the domain of pmv is the cross-product of its elements’ domains:

Dpmv = Dpsv0
× . . .× Dpsvk−1

Consequently, we get a set of single-valued and a set of multi-valued parameters, P sv and Pmv,
respectively, with P = Psv ∪ Pmv.

In the course of this chapter, we assume a well-defined data acquisition framework to be in place
and consequently the set of possible parameters that can be used in an application to be finite. The
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namespace used within this acquisition framework is standardized. For the underlying system model
of nomadic computing it is also reasonable to assume that a core set of parameters is available at
each location visited. Especially, we assume location and location detection to be available.

In order to structure the given parameters such that we will eventually be able to use instances
of parameters (raw data) to compose context, all parameters are logically grouped into l subsets.
The grouping criterion depends on application semantics. The sets are non-empty and pairwise
disjunctive. Hence, let P be a partition, i.e., a set of l partition elements:

P = {P0, . . . , Pl−1}, Pi ∈ 2P \ ∅,
with ∀ p ∈ P. ∃ Pi ∈ P : p ∈ Pi, 0 ≤ i < l

and P =
⋃

0≤i<l

Pi, Pi ∈ P , Pi ∩ Pj = ∅, ∀ 0 ≤ i, j < l, i �= j.

The restriction to pairwise disjunctive sets is not mandatory but for structuring and simplifying the
overall design.

On these sets we define a surjective grouping function: g : P→ P , which maps each parameter to
a partition element. The domain of a partition element P i is the cross-product of parameter domains:

DPi = Dpi,0 × Dpi,1 × . . . Dpi,|Pi|−1 ,

where the pi are single or multi-valued parameters.

Example. For our running example, we identify three main context categories (cf. Fig. 8.3(a)):
first, identity, with ID representing a user, his medical history MedData, his blood group BG, and
physiologic parameters (for health state determination) such as heart rate HR, blood pressure BP
and skin temperature ST. Second, location and environment, with geographical position POS, light
intensity LI, temperature T and barometric pressure AP. And the last category is date and time.

Hence, we have a “global” set of parameters we can use. For the example, we define:

P = {HR, BP, ST, POS, LI, T, AP}
Optional partitioning P gives us the following partition:

P = {PPHY SIO, PENV , PLOC}
with the partition elements (obtained by applying the mapping g):

PPHY SIO = {HR, BP, ST}, PENV = {LI, T, AP} and PLOC = {POS}.
Whereby PENV and PLOC obviously have to be acquired externally.
For the demonstration of parameter handling we take the blood pressure parameter BP as an ex-

ample. BP is a multi-valued parameter. It consists of the single-valued parameters systolic, diastolic
and mean aortic blood pressure:

BP = {BPsys, BPdias, BPmap}
The unit of all three pressure types is 0��!�1. For the single-valued parameters we may choose the
following domains:

DBPsys = {0, . . . , 300}, DBPdias
= {0, . . . , 200}, and DBPmap = {0, . . . , 300}.
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Some "normal" values of BPsys, BPdias and BPmap are 120 mmHg, 80 mmHg and 92 mmHg, re-
spectively. BP’s domain is defined as the cross product of its elements’ domains:

DBP = DBPsys × DBPdias
× DBPmap .

8.3.3 Interpretation
The next step is to introduce the notion of an interpretation. Interpretations operate at the junction
between the design process of an application and its actual deployment at runtime. Their use there-
fore is twofold: on the one hand they are used as abstraction from an actual data source as they
describe context on a semantic level; on the other hand they serve as a convenient means for the in-
frastructure to preprocess and filter data, thereby reducing the number of notification to be processed
by mobile clients. Thus, goal of the interpretation process is to build a well-defined interpretation
hierarchy, deployed in the infrastructure, which generates high-level application context out of a
potentially large number of raw data items, floating through the system.

Before diving into details, take a simple example from a different application domain: let us as-
sume a program has to decide what icon to display to lab students sitting in a windowless lab in order
to indicate the weather conditions outside a building (e.g., comparable to the kweather applet of the
K Desktop Environment [Env03]). It displays a friendly sun, if temperature, time, and sunlight in-
tensity show that it is “a sunny but not too hot day”. On the other hand, on a really hot day, a different
icon is shown (e.g., a sweating sun). Goal must be, to construct a hierarchy of interpretations, even-
tually, converting and concentrating low-level data, e.g., ($������
����2-33%44$����55676%),
into context, meaningful for reaching the goal of displaying the appropriate icon (“really hot”).

For our model, by design, we require the interpretation process to be goal-oriented and data-
centric at the same time, i.e., every interpretation is supposed to generate data “closer” to the goal
of input data to control-driven applications and to be compatible with the underlying asynchronous
data-driven paradigm of publish/subscribe.

To achieve this, two obvious complementary “conditions” must hold:

1. Decomposition. At designtime, any application-level context which is subject to interpre-
tations in the infrastructure can eventually be described in terms of parameters and the de-
composition process, as introduced in this section, is applicable.

2. Composition. Any application-level context information must be composable at runtime in a
finite number of steps out of actual instances of parameters.

The first item simply states that the process of decomposition as specified in this section results in
a well-defined set of parameters P. Complementary, when deployed at runtime, any interpretation
hierarchy eventually will produce the intended context information for some application.

Formally, the process of interpretation is based on an interpretation mapping i, which is a map-
ping of m ≤ |P| parameters and n ≤ |I| − 1 results of interpretations to a new interpretation, the
latter being on a higher level of abstraction, whereby I holds the set of all interpretation mappings
available:

i :

Di︷ ︸︸ ︷
Dp0 × . . .× Dpm−1 × Γ0 × . . .× Γn−1 → Γi, 1 ≤ m ∧ 1 ≤ n or

i : Dp0 × . . .× Dpm−1 → Γi, 1 ≤ m ∧ n = 0 or
i : Γ0 × . . .× Γn−1 → Γi, m = 0 ∧ 1 ≤ n
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In the definition above, Dpj (0 ≤ j < m) are the domains of parameters pj ∈ P and Γi =
{d0,i, . . . , d|Γi|−1,i} contains all possible notifications that can be created by i. The input Γ’s are
defined analogous to Γi. interpretation mappings (from now on called interpretations) whose do-
mains only consist of parameter domains (see the second definition of i above) are called first-level
interpretations. If the ranges and domains of interpretations are compatible, compositions of inter-
pretations are allowed and an interpretation hierarchy can be built. When moving upwards in that
hierarchy, each hierarchy level provides a higher level of abstraction. Obviously, by this definition
we require interpretations to remain stateless in order to make them usable for more than one single
application.

One possible implementation of interpretations is using a notification service together with event
composition and aggregation. Without going into the details, common event compositors include
conjunction, disjunction, sequence or negation. Approaches to implement event composition in
event-based systems are described, e.g., in [LCB99; CBB03; PSB03]. At runtime event compos-
itors are deployed within the network of event routers and are specialized to implement a specific
composition, i.e., they consist of notification filters, matching on predefined data templates in the
content of a notification. Depending on the type of composition one or more events are needed to
satisfy a specified composition criteria. Opposed to “conventional” notification filters, where a pos-
itive match only serves the purpose to decide in which directions a notification must be delivered to
reach potential consumers, a compositor consumes events in order to produce an appropriate event of
higher semantic meaning instead, which is then routed, accordingly. Thereby, typically, the number
of events in the system is reduced. For the underlying notification service notifications generated
by compositors are not handled differently to conventional notifications, thereby not weakening the
data-driven paradigm of event systems. Thus, semantic meaning must be implemented elsewhere,
i.e., notifications produced by one compositor is used as input to other compositors, which subscribe
to notifications of the generated kind. Hereby, a self-organizing hierarchy of interpretations is built
on top of a notification service, eventually generating context as input for an application by using
data-driven sources.

Example. After designing the intended behavior of some application "��, we get a description of
"�� like the one shown in Fig. 8.3b. The finite state machine shown describes the reactive behavior,
i.e., state changes, on the event of some new context.

For the sake of simplicity, the only top-level interpretation in this example is i Health, which is
defined as:

iHealth : DPPHY SIO × DPENV × ΓiLocation︸ ︷︷ ︸
DiHealth

→
{

ok, critical,
dead, unknown

}
︸ ︷︷ ︸

ΓiHealth

However, it is worthy to note that the interpretation of the user’s position as part of i Health (rep-
resented by ΓiLocation ) is done by a separate (second-level) interpretation iLocation, specialized on
location detection. Thereby specific knowledge about the health state is separated cleanly from
specific knowledge about interpretation of location information.

Finally, in a recursive process, the set of necessary parameters to concretize such interpretation
easily can be obtained and expressed in a set of subscriptions.

The design process (cf. Sect. 8.3.4) results in sets for parameters, their partition, and interpreta-
tions:

PMobiHealth = PPHY SIO ∪ PENV ∪ PLOC and IMobiHealth = {iHealth, iLocation}
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Figure 8.4: Statecharts and external interpretations

8.3.4 General Scheme for the Development of Context-aware
Applications

Given the definitions of interpretations and parameters it is possible to build applications using ex-
ternal context. In this section we show the overall design process of an application App, before we
explain the underlying model of finite state machines in more detail. Goal of the process shown here
is to recursively design well-defined hierarchies of event compositors, event aggregators and multi-
plexers (cf. Fig. 8.2), having an application-centric semantics at the top and a data-centric realization
at the bottom of any such hierarchy, describing the distribution of control during design. At runtime,
the same hierarchy describes the flow of data, needed to generate the context for an application.

• The first step is to define the goal of an application in terms of reactive behavior to context
changes. As starting point, we assume the proceeding detailed in the next section to be applied
and eventually as result a top-level representation of App as shown in Fig. 8.4.

• Once goal and behavior are specified, it must be determined, which top-level interpretations,
i.e., what context information, is needed as input for application App and its separate sec-
ondary finite state machines. For every transition defined, an action a is added to the set of
actions to define a reactive behavior where needed.

• The heart of the shown process is to recursively concretize the top-level interpretations (Sec-
tion 8.3.3) into parameters (Section 8.3.2). The recursion basically consists of four steps:

1. For each interpretation i identified, add i to the set of contributing interpretations.

2. Check the set of input parameters for each interpretation i. Add all new parameters of i
to the set of parameters PApp contributing to App.
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3. Check the set of lower-level interpretation i ′ that are used as input for the current in-
terpretation i. Add them to the set of interpretations IApp contributing to application
App.

4. For each interpretation i′ newly added, repeat the recursion until no new interpretation
is identified and only parameters were added in step 2 and 3.

In the next section we show that the result of the process presented here can be expressed as a
well-defined finite state machine App, which adheres to a control-oriented semantics on the one
hand and is directly deployable in a data-driven mobile environment using a notification service, like
the one specified in this thesis.

8.3.5 Modeling Context-handling with Finite State Machines

This section is dedicated to the details of the design process presented in the previous section. Sev-
eral models for task-oriented design were proposed in the literature, probably the best known are
state patterns [GHJV95] and statecharts [HN96]. Both models have in common that the actual de-
sign of applications is based on the definition of finite state machines. Interestingly, in [HG97] Harel
and Gery show, how statecharts can be applied to object-oriented modeling under the assumption of
a central controller, which is partly comparable to the problem we tackle in this chapter: coordina-
tion of distributed, independent and anonymous components to reach a common goal. We then show
the appropriateness of a similar approach for building mobile context-aware applications. Following
their idea, we require applications to be specified as shown in Fig. 8.4: as basic building blocks,
an application can be composed out of several independent “processes” or modules. Thereby, inde-
pendent parts can be modeled separately from each other as they are implicitly concurrent. On the
other hand, within each module execution serves a common goal and shares a common thread of
execution, which can be modeled conventionally by using states and state transition, i.e., finite state
machines.

For modeling external context as input, the general idea is to explicitly group the application
around the top-level interpretations used. Then, we use this initial set of interpretations as starting
point for the refinement process introduced in the previous section. For each module being part of
the application, by design, the internal thread of control is dependent on the interpretations used as
external input at some point. Hence, every output value of interpretation i in the result set Γ i corre-
sponds to a separate state transition in the finite state machine representing this module. Associated
to each transition is a set of actions, defining the reaction to the change of context indicated through
i. Thereby, we design the context-aware part of application "�� as part of the finite state machine
for an application.

Formally, the above approach has two implications: (i) at top level, we can model applications as a
single finite state machine consisting of a set of secondary finite state machines, each corresponding
to an independent part of the application; and (ii) each secondary finite state machine correlates to
the interpretations and parameters contributing to the input for the progress of this particular finite
state machine.

Thus, we start by giving a definition for the top-level finite state machine "�� as result of the
design process. Let PApp ⊆ P and IApp ⊆ I be the sets of parameters and interpretations relevant as
input for an application "��. On the application level, parameters and interpretations are used to take
application-dependent actions, which we denote as A = {a0, a1, . . .}, for easier use. For example,
user interaction as result of some context change now can be modeled by defining some action a i as
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part of A. Also, the need to reinitialize the application whenever a location change occurs can be
modeled as an application specific action.

Further, let FSM be the set of all finite state machines. Every application "�� defines a subset
FSMApp of FSM. Hence, we define "�� as a 5-tuple:

App = (PApp, IApp, FSMApp, sglobal, A), FSMApp ⊆ FSM,

where sglobal is a distinct state, the so-called global state, a representation of the global state an
application currently is in when all concurrent state machines constituting "�� are considered.

Next, in order to make the correspondence between interpretations and state changes in concur-
rent modules of the application "�� more concrete, we have to define a Moore automaton for each
interpretation i ∈ IApp, first. Fi ∈ FSMApp is a 7-tuple:

Fi = (Q, Σ, ∆, δ, λ, qstart, E) with δ : Q× Σ→ Q, λ : Q→ ∆, E ⊆ Q,

where Q is a set of states, Σ defines the input and ∆ the output of F i, δ is a state transition function,
λ an output function, qstart a dedicated initial state, and E is a set of final states, defining a subset
of Q. Within our model we make the distinction between core states and bracket states of F i. Core
states are states that have a corresponding interpretation in i (to be more accurate: they have a
corresponding value within the result set of i, Γ i, which are created by a surjective mapping). As not
every state change correlates to external context changes, we define bracket states to be states, which
are not related to any interpretation i. In order to adhere to the semantics of the statechart model, we
define qstart and qend (whereby always qend ∈ E) to be distinct bracket states that are part of every
finite state machine in FSM.

Together, we get:

Q = Qcore ∪Qbrackets, {qstart, qend} ⊆ Qbrackets and qend ∈ E.

The state transition are covered by the transition function δ. Here, we have the strongest semantic
ties between the context needed in an application and the data acquired outside the application. As
introduced above, δ is mainly based on the interpretation i used. We distinguish:

1. Autonomous transitions. Autonomous transitions occur wherever an interpretation directly
causes a state change in Fi. Only the actual result of i is used for determining when to change
states, i.e., Fi’s input alphabet Σ equals the result set of i: Σ := Γi ∪ {end}. For exam-
ple, whenever an observed physical object changes state, a corresponding virtual counterpart
should change its state, too. In Fig. 8.4 the ����	� *� *&&-state is a good example for an
autonomous state change.

2. Non-autonomous transitions. Non-autonomous transitions are used whenever an interpreta-
tion is not the only base for the decision when to change from one state to another. The
application “consults” an interpretation i, but the decision of whether to change states is done
“elsewhere”, e.g., by displaying the content of the interpretation to the user for the final de-
cision what to do. The interpretation then acts as information, but the decision is internal to
the application. Formally, Σ then must be written as Σ := Γ i ∪ ΣApp, where ΣApp is an
application-dependent input, representing the internal decision process.

Autonomous transitions are most desirable for a clean separation of coordination and computa-
tional concerns. But, in mobile applications many examples can be found where other factors play an



8.3 A Model of Context and Context-Handling in Notification Services 143

important role and forbid automated state changes. For example, user feedback for decision making
(e.g., “click to buy”) or locally available status information, like low battery life, might influence a
state change or have a higher priority than external context.

Next, the global state sglobal is a |IApp|-tuple of all states the separate and completely concurrent
finite state machines are currently in:

sglobal = (qcurrent,0, . . . , qcurrent,|IApp|−1), qcurrent,j ∈ Qj ,

with Qj (0 ≤ j ≤ |IApp| − 1) being the set of states of finite state machine Fj ∈ FSMApp. Based
on the global state sglobal, the mapping γ is defined as:

γ : Q0 × . . .×Q|IApp|−1 → 2A \ ∅

The function of γ is that of a selector. Because of concurrency, whenever a subordinary finite
state machine Fi of "�� changes state, an associated action ai,j can be executed in reaction to this
state change (cf. also [HN96] for a discussion on event-condition-action-rules in this context). In
our model γ has to select the appropriate action relative to a given change of state. For the sake of
simplicity we assume all actions to be relative to each subordinated finite state machine and therefore
independent of the state of other parts of the application "��. The advantage is that then s global is a
“virtual” state, i.e., does not have to be actually determined and, more importantly, the selection of
an action a is determined exclusively by the finite state machine the state change occurred in.

Example. For our example, the set of associated actions to be taken by the application MobiHealth
is as follows:

A = { Do nothing, Send health state and position information,

Communicate with user, Initiate rescue operation }

Since we have ihealth as only input for the application, the definition of a single finite state machine
as “module” is sufficient: FSMMobiHealth = {FHealth}. FHealth is defined as

FHealth = (Q, Σ, ∆, δ, λ, qstart, E) with

Q = Qcore ∪Qbrackets, Qcore = {qok, qcritical, qdead, qunknown},
E = {qend}, Σ = ΓiHealth

∪ {end}.

The states of Qcore are directly derived from ΓiHealth
. The state transition function δ then is defined

as:
δ(qi, j) = qj , for j ∈ Σ, qi ∈ Qcore \ {qdead}

qj ∈ Qcore ∪ {qend}
δ(qdead, end) = qend

δ(qdead, dead) = qdead

δ(qstart, j) = qj , for j ∈ Σ \ {end}, qj ∈ Qcore

The first of δ’s equations shows that remaining in a state is allowed (that is, if i = j). For the example
application, we do not define an output function λ. Figure 8.3b. shows some state transitions of
FHealth. To keep this example simple, we left out the qunknown state, which is semantically more
problematic and adds nothing to this example. The function γ determines how the application has
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to react in different states, whereby here only core states are of interest. The reaction to some state
change is defined by the function γ:

γ(qok) = {{Do nothing}}
γ(qcritical) = {{Communicate with user}, {Initiate rescue operation,

Send health state and position information}}
γ(qdead) = {{Send health state and position information}}

γ(qunknown) = {{Communicate with user}}

In state qok no action must be taken because the status is normal. In qcritical, we have detected that
something is outside the semantic specification1. The obvious reaction to the transition into qcritical

is, to try and get feedback from the user2. Depending on the (lack of) feedback from a user, the
reaction and the next transition might be independent from the interpretation function, even if the
system is reporting that the state changed back to normal. If the user does not react, all relevant data
is sent to a base station and a rescue operation must be initiated immediately. Obviously, the state
qunknown should never be reached and serves as default state for malfunctions.

8.4 Summary
A significant class of applications in mobile computing are context-dependent applications, like
location-based services, which operate in a volatile execution environment. Control-based coordina-
tion promises to be a convenient abstraction for the specification of applications which have to adapt
to context changes, as it corresponds to prevailing imperative programming languages. On the other
hand, application context is based on external data sources available in the infrastructure, which usu-
ally are not part of the same application domain. For example, in the domain of health monitoring the
state of a patient can be dependent on the location (inside or outside) which is detected by external
location sensors. Moreover, mobile systems must be built loosely coupled and therefore, data often
is generated independently from a concrete application, inherently following a data driven paradigm.
In this paper we present a scheme to decompose control driven context-dependent applications into
smaller components, which, eventually, are based on actual entities available in the environment.
Finite state machines are used to model the application and they are systematically refined to match
data available in the infrastructure. To connect data-driven sources and the task-oriented applications
a notification service is used. We illustrated our approach with an example taken from the health-care
domain.

������������

1 The state transition from qok to qcritical is a good example for an autonomous transitions as defined in Section 8.3.5.
The change is solely based on external input.

2 Complementary, a good example for a non-autonomous transition.
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I mean, if 10 years from now, when you are doing something quick and dirty,
you suddenly visualize that I am looking over your shoulders

and say to yourself, Dijkstra would not have liked this,
well that would be enough immortality for me.

We humbly disagree: 10 years of Dijkstra is just not long enough;
may he happily haunt our consciousness for 1010 years.

Such an increase is more befitting his stature.

From: More Java Pitfalls[DSAR03]; dedication to Edsger W. Dijkstra

9.1 Introduction

This chapter is dedicated to the implementations done in the context of this thesis. We focus the
following description on two main aspects: first, the integration of support for mobile clients into
the underlying distributed notification service REBECA and second, the extensions made to facilitate
location-dependent subscriptions as an integral part of the routing infrastructure. Although substan-
tial additions were made, we show in this chapter that the design of the algorithms introduced in
earlier chapters are beneficial for the implementation effort: either the changes necessary can be
masked in such a way that the core REBECA system is not aware of them, or they are completely
orthogonal to the existing functionality. Therefore, the core functionality of REBECA is not impaired.

The outline of this chapter is as follows: first, in Section 9.2 we give implementation details
on the distributed notification service REBECA, which was partly implemented as part of the work
presented in [Müh02] and is still under development. We give an comprehensive overview and detail
some aspects of its realization. In the following Section 9.3 we clearly show how support for mobile
clients can be added and how the relocation protocol detailed in Chapter 5 can be integrated into
REBECA. This is done by adding the necessary support for relocating clients mainly in the event
brokers at the borders of the system. We designed this in a way that mobility mostly is masked
from the inner core of the distributed event routing network. Thereby, the existing infrastructure can
be leveraged for the relocation process without hindering conventional message routing. However,
an orthogonal extension is made in the core of REBECA for implementing the stateful relocation
protocol (cf. Section 5.3) on top of the inherent stateless message routing. Finally, in Section 9.4 we
give details on the integration of location-dependent subscriptions into the routing network. Here,
special emphasis was laid on the implementation of a hybrid location model resembling the one
introduced in Chapter 4, together with the algorithm detailed in Chapter 6.
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Figure 9.1: The REBECA routing network: spanning tree structure over physical networks

9.2 A REBECA Walkthrough

In this section we describe the implementation of REBECA which is the underlying code base for the
extensions made to support mobile clients.

At the most abstract level the REBECA notification service consists of a set of communicating
independent components, called event routers, running on different computing nodes in a network.
Each of these event routers is connected to one or more other event routers, forming a spanning tree
of event routers. This is detailed in Figure 9.1.

For clients to access the routing network of REBECA the interface ����������� is specified (cf.
Figure 9.2). It defines the most fundamental methods for accessing the system. Following the defini-
tions and semantics given in Section 3.2 the main accessor methods are ���	���$%, ���������$%,
and �����������$%. Additionally, for publishers the methods 
��������$% and ��
��������$%
are introduced. They specify the ability to issue and to revoke advertisements for notification pro-
ducers. The interface can be implemented in various ways.The two most important implementations
in the basic REBECA framework are ���
	����������� and ��&
�	������������. We will add
another one for mobile clients later in this chapter. The ��&
�	������������ is implementing the
default behavior of an event broker. A ���
	����������� is a specialized implementation usually
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DefaultEventBroker
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«Schnittstelle»
EventBroker

Figure 9.2: EventBroker interface and two important implementations

found on client machines. It is loaded onto the system as class library and provides the client with
means to connect to the broker network. Internally, the local event broker acts as event dispatcher to
the applications running on the client. Therefore, its behavior is different to an event broker running
in the network.

Once a notification or subscription enters the routing network, it is forwarded towards appropriate
addressees. Within the implementation, this is the task of event routers. Their basic behavior is to
inspect a notification and compare it to subscriptions held in a table structure. Whenever a subscrip-
tion matches a notification the event router forwards the notification in the direction indicated in the
table entry. A similar behavior is implemented for subscription/advertisement pairs.

However, the implementing class �����
����� basically is a wrapper class managing the startup
and initialization of a new instance of an event router on a particular computing node. The original
design goal for REBECA is to provide efficient means for content-based routing, as introduced in
Section 3.3.3. Therefore, the actual routing is delegated to specializations of a fundamental routing
class 
������������ (cf. Figure 9.3). The specializations currently implemented for the generic
content-based routing are the classes ����	�
������, +�������
������, ��������
������,
and �������
������ that build up a hierarchy of inherenting classes. The semantics of using a del-
egate like ����	�
������ is that of providing a plug-in mechanism for new or specialized routing
algorithms. The role of an instance of a 
������������ or its specializations is the processing and
dispatching of incoming events, i.e., of instances of the general class �����, according to the imple-
mented routing strategy. Thereby the REBECA model is easily extensible to new implementations of
routing algorithms.

For the actual routing decision an implementation of a 
������������ refers to an instance of
the type 
�������
�	�, which holds all subscriptions (realized by instances of the class 7�	���)
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Figure 9.3: The class RoutingEngine and its specializations

and the associated connections to the next hops in the broker network. We have shown the class

�������
�	� and its dependencies in Figure 9.4. 7�	���� and ��������������s are contained
in a wrapper class 
�����������. To process a notification the method ������������$% in the
class 
������������ is called. This method takes all steps necessary to forward or discard an
notification according to the routing strategy and the filters used.

The method �
���$% in the class 7�	���must be pointed out, as this method determines whether
a notification matches this particular instance of a filter or not. �
���$% returns a simple boolean
value for this purpose. Thereby, the routing decision basically is delegated into the actual instance of
a filter. This introduces an elegant means to provide various different decision functions for general
and specialized application cases without limiting the generality of the routing network. We leverage
this core design for implementing location-dependent filters later in this chapter.

Another interesting design decision is the interface ��������������, which is also shown in
Figure 9.4. Once the filter has decided to match a particular instance of the class �����, the method
������� on the associated implementation of this interface is called. This causes the event to be
processed further down the communication stack. The most important implementation to name are
�������
������ and �������������
������. �������
������ implements the core function-
ality and the most common specialization is the �������������
������ providing the needed
functionality to send notifications over a socket connection.

In Figure 9.5 the class ����� and its specializations are shown. ����� is the base class for ev-
ery notification. The complementary class to this event class is the base class 7�	��� as shown
in Figure 9.4. Any notification in the network is a specializations of the base class �����. This
includes predefined “helper” classes, like ����������� or ���������. Three additional spe-
cializations are 
��	
������, ����
���������, and "���������. Especially "��������� and
����
��������� play an important role as they provide means to convey administrative messages
within the notification service. For example, the handling of subscriptions and advertisements is
based on this mechanism: appropriate notifications are send through the network to indicate that a
subscription or advertisement was added or revoked. The class ����
��������� additionally al-
lows to transport arbitrary content as content type 8
�
)	
��)*�8���. This can be leveraged to
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Figure 9.5: The class Event and its specializations
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transport, e.g., a new subscription (as type ������������) to other routers in the network.

9.3 Adding Support for Mobile Clients

Adding support for mobile clients as detailed in Chapter 5 is mainly a software engineering issue of
adding functionality to REBECA without impairing the underlying functionality of the system. The
algorithm we presented in the named chapter solely relies on main characteristics already present in
the basic implementation of the REBECA notification service. The necessary changes made therefore
leave the core functionality intact and are located either at the “borders” of the system or orthogonal
to existing functionality.

The proposed algorithm explicitly uses the REBECA notification routing network for the relocation
of clients from one access point to the system to another, i.e., the border brokers. Hence, at this point
we had to decide which additions to the already implemented system are necessary to facilitate such
relocations. As it turned out the mechanism to relocate clients by leveraging the routing network is
beneficial with respect to the effort necessary to implement such functionality.

9.3.1 Meeting the Failure Semantics of REBECA

One important aspect that must be considered is that REBECA has no concept of frequent and regular
disconnections and reconnections of clients. The underlying assumption for the original implemen-
tation of REBECA stems from classical distributed systems design. Consumers and producers are
assumed to remain connected to the network permanently and in case of a disconnection all associ-
ated resources can be freed instantaneously because the client “died.”

This semantics assumes a particular failure-mode: in case a client is not reachable anymore it will
remain in this state forever. A client that connects to the notification service is assumed to be a new
instance of a consumer or producer, respectively. As we have detailed before this assumption does
not hold for mobile systems.

As a consequence, this results in the need to translate the semantics of mobile systems to the
failure semantics used in the REBECA notification service. The task at hand is to make connections
and disconnections of mobile clients opaque to the notification service and only disconnect clients
from the broker when a permanent disconnection can be assumed.

One choice to implement such behavior is to simulate the proper behavior of a REBECA client
on top of the semantics found in mobile systems. For this it is important to hide the fact of dis-
connection and reconnection from the broker network and delegate the proper handling to a special
component. This is realized through an additional class �����������
�
��� in the border brokers
and a subclass of the �������
������ class: ���
�	��������
������. Disconnection (in terms
of REBECA) only occurs if (a) the client is relocated to a different location or (b) some timeout is
reached such that the client is assumed to have died. In case of (a) the relocated client is unsub-
scribed from all its subscriptions and allocated resources can be garbage-collected safely. However,
case (b) is problematic. Finding a reasonable threshold for garbage-collection is always a difficult
choice to make. On the other hand, garbage collection has to be facilitated to free resources for other
(mobile) clients.

For the implementation two objectives have to be met: (i) simulate the proper delivery of noti-
fications to a client even if the client is currently not available and (ii) provide means to discern
reconnecting, relocating and new clients at a given broker.



9.3 Adding Support for Mobile Clients 151

+activateDelivery() : Boolean
+deactivateDelivery() : Boolean
+deliverCache()
+disconnect()
+getEventTransport() : rebeca::networt::EventTransport
+getHandback()
+readEvent()
+writeEvent()
+setEventTransport()
+setHandback()

-capacity : int
-my_etm : rebeca::networt::EventTransport
-myBuffer : rebeca::mobility::network::DurableEventTransport::RingBuffer
-myHandback
-seqNr

DurableEventTransport

+getInstance() : rebeca::mobility:network:ConnectionManager
+createNewHandback() : String
+getDurableEventTransport() : rebeca::networt::EventTransport
+isHandback() : Boolean

-newDetm : DurableEventTransport
-singleton : rebeca::mobility:network:ConnectionManager
-transports : java::util::Hashtable

rebeca::mobility:network:ConnectionManager

java::util::Hashtable

-ACK
-NACK
-handback
-seqNr
-status

NegotiationEvent

+isA()
+isOfType()
+getTypeName()
+isNormal()

Event

1

*

1

1

1 1

-myConnectionManager : rebeca::mobility:network:ConnectionManager

RelocationEventBroker

1

1

rebeca::network::RemoteEventBroker

Figure 9.6: The class 
�	��
��������������� and �����������
�
���

A new class 
�	��
���������������, as an extension of an �����������, is a direct sub-
class of the 
���������������� (cf. Figure 9.6). It provides for the semantic wrapper of the
concept described. The only addition to the fundamental behavior of a 
���������������� is
that the new event broker is aware of relocations. The 
�	��
��������������� is responsible
for the proper handling of mobile clients. Upon initialization it instantiates the singleton class
�����������
�
���.

The �����������
�
��� then is responsible for the proper management of client connections.
Each broker instance has exactly one reference to a �����������
�
���. This single instance can
be retrieved by calling the static method �����������
�
���)���+���
���$%, which returns the
current instance of the class or creates one if this is the first call of the method. The main task of the
connection manager is to discern the different flavors of client connections (new clients, reconnec-
tions, and relocations). It holds a list of all currently known clients in a hashtable data structure with
unique identifiers as keys. Associated with each client is an instance of a ���
�	��������
������
(shown in Figure 9.6 and detailed in Figure 9.7). Once the connection manager has decided that a
new client has connected, it instantiates a new ���
�	��������
������ and adds the client to its
hashtable of new clients. However, deciding if a client is new, reconnecting, or relocating is done
by means of a negotiation protocol (cf. Figure 9.8). A subclass of �����, 9�����
���������, is
leveraged to negotiate a connection. We chose this particular “transport encoding” for negotiation
for three reasons: (a) we do not have to provide means for “out-of-band” communication, (b) notifi-
cation handling is a built-in functionality of both sides of the negotiation protocol and therefore can
be handled more easily, and (c) “legacy” clients which are not aware of mobility, by default, simply
discard such a notification as they cannot handle them. This leaves the underlying functionality as a
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+activateDelivery() : Boolean
+deactivateDelivery() : Boolean
+deliverCache()
+disconnect()
+getEventTransport() : rebeca::networt::EventTransport
+getHandback()
+readEvent()
+writeEvent()
+setEventTransport()
+setHandback()

-capacity : int
-my_etm : rebeca::networt::EventTransport
-myBuffer : rebeca::mobility::network::DurableEventTransport::RingBuffer
-myHandback
-seqNr

Rebeca::mobility::network::DurableEventTransport

+readEvent()
+writeEvent()
+process()
+isConnected()
+disconnect()

rebeca::networt::EventTransport

+flush()
+get() : Event
+getFrom()
+isEmpty()
+put() : Event

-bufferSize
-count
-elements : Event
-inPosition
-outPosition
-maxPosition

rebeca::mobility::network::DurableEventTransport:
:RingBuffer

+isA()
+isOfType()
+getTypeName()
+isNormal()

Event

-sequenceNumber : long

rebeca::mobility::event::DurableEventTransportContainerEvent

Figure 9.7: The class ���
�	��������
������

“classical” notification service intact. In the following we give some details of the protocol.
Upon a connection request on a socket (stemming from the original implementation of REBECA)

the connection manager instantiates a new �������������
������ for communication with the
client. Then a new 9�����
��������� is created with a newly generated handback, i.e., a unique
identifier as a token to identify the various steps of the process. We have roughly sketched the in-
teraction between the objects involved in Figure 9.8 on page 153. At the core of the protocol the
connection manager can discern clients by the handback used in the negotiation event. At the begin-
ning of the negotiations the connection manager does not know whether a client is new, reconnecting,
or relocating. Therefore, a new handback is generated and is sent to the client. The client inspects
the handback and can decide its course of action: if the client is new the negotiation event is sent
back with the member variable "�: set. This indicates that the client accepts the handback as unique
id. When 9"�: is set1, it sends back the event together with a (formerly assigned) handback.

Now the connection manager can discern all relevant cases:

• New client. In case of an "�: as response in the negotiation event, the client is consid-
ered to be new and a new ���
�	��������
������ is instantiated for communication.
It is finally returned to the calling 
�	��
���������������. The client is added to the
hashtable of known client, using the handback as key. As shown in Figure 9.7, the class
���
�	��������
������ basically wraps a “normal” event transport. Hence, the event
transport used for sending the negotiation notification can be reused and is incorporated into
its buffering variant (using the member variable ��(���).

1 We are aware that using two different variables is highly redundant, but it is simply used for clarification.
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Client RelocationEventBroker

ConnectionManager

getInstance()

ConnectionManager()

init and create listening socket()

connect()

getDurableEventTransport()

createHandback()

createNegotiationEvent()

listen until destroy()

EventSocketTransport
createEventTransport()

writeEvent()

writeEvent()

{sendNegotiationEvent(ACK, handback, seqNr)
OR

sendNegotiationEvent(NACK, handback, seqNr)}

writeEvent()

writeEvent()

readEvent()

return NegotiationEvent()

isACK()return DurableEventTransport()

isNACK()

isKnownHandback()

deliverBuffer()

writeEvents() isUnknownHandback()

return DurableEventTransport()

initRelocation()

replay()

replay()

prependToBuffer()

writeEvent()

Figure 9.8: Interaction diagram of the negotiation protocol

• Reconnecting client. A reconnecting client can be recognized by the variable 9"�: set and a
handback that can be found in the hashtable of known clients. Then the associated ���
�	�;

�������
������ is retrieved, the encapsulated instance of an �������
������ is replaced
by the one used for negotiation and together they are finally returned to the 
�	��
����;

�����������. After activation the buffered notifications contained in the buffering data struc-
ture of the ���
�	��������
������ are delivered to the client.

• Relocating client. A relocating client also can be recognized by the 9"�: variable set. Ad-
ditionally, the handback provided is not in the hashtable of known clients. In this case the
relocation of the client has to be initiated. The fundamental behavior is the same as in case
of a reconnecting client. A new ���
�	��������
������ is used and added to the list of
known clients. This reference is finally returned to the caller. After returning the reference the
client is “active” as far as the event broker is concerned. However, prior to the termination of
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the relocation process, delivery of notifications in the ���
�	��������
������ is set to hold
(cf. the description of the underlying relocation algorithm in Chapter 5). This is done to assure
FIFO ordering. After receiving the subscriptions of this client, 
�	��
����"���������s, as
specializations of "��������� and ����
���������, are created and handled to the event
broker for further processing. The 
�	��
��������� constitutes the basic semantics of the
relocation process. They contain a subscription of a client, the sequence number of the last
heard notification and the handback provided to identify the client at other brokers.

The endpoint of the negotiation in each case described above is returning a reference to a ���
�	�;
�������
������ to the calling 
�	��
���������������. Moreover, in case of a relocation, the
connection manager submits 
�	��
���������s for further processing.

The main addition made to the 
�	��
��������������� and (as described below) the event
routers in the network is the proper handling of relocation admin events. Briefly, each broker or
router had to be extended for proper handling of such events and must take certain actions that we
specified in the relocation algorithm in Section 5.1. Summarized, each broker has to add additional
fields to its routing table holding information about the identity of a client for a subscription and the
status of an ongoing relocation. Therefore, message routing is not completely stateless.

9.3.2 Embedding the Relocation Process into Stateless Message
Routing

Within the core of the REBECA network some adaptations were made. The central problem we face
is that the relocation protocol requires some state information to be hold in the event routers. This
contradicts the paradigm of a distributed notification service where message routing is intrinsicly
stateless. Our algorithm requires that a subscription of a client can have different states throughout
the progress of the relocation process. Moreover, we use a handback to map subscriptions to clients.
This is also additional information to be maintained in the routers. However, as long as the changes
required for hosting mobile clients are completely orthogonal to the underlying paradigm of message
routing in the classical settings, we consider this to do no harm. Two migration paths from a normal
REBECA network to a mobility-aware REBECA network are feasible: first, each router in the network
is replaced by a new router, having the necessary facilities for relocation handling, or second, a
completely new overlay network is built parallel to the existing one. For simplicity, we assume the
first approach.

The basis for our extensions is the class �����
����� as described in Section 9.2. This class
provides flexible means to “plug-in” new implementations of the class 
������������, or more
precisely its specializations. We chose to leverage this concept for the two main changes to the
current REBECA system we describe here. First, we adapted the routing engine for simple rout-
ing to proper handling of instances of 
�	��
����"���������, the administrative event we in-
troduced for handling the relocation process. Second, we extended the classes 
�������
�	� and

����������� for holding state information about mobile clients. The roles of those classes in the
REBECA notification service are detailed in Section 9.2 and are shown in Figure 9.4.

As a first step, the existence of a relocation process must be conveyed. This can be done by intro-
ducing a new administrative notification 
�	��
����"��������� extending the already introduced
"��������� class. However, we had to change the underlying 
������������ for the simple rout-
ing strategy accordingly. Therefore, we changed the existing implementation and refactored the cur-
rent implementation such that further extensions can be integrated more easily. We chose to change
the whole handling of "���������s to a Listener Pattern approach for the integration of the new
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type of event into the event router. Moreover, for further extensions we prepared the implementation
for employment of factories whenever an (currently) unknown event type is encountered. But, a full
implementation is left for future work. Goal of the redesign of the �����
����� class is that for a
particular type of "��������� handlers can be added or removed on-the-fly and appropriate actions
can be associated to these listeners. This resembles the ActionListener concept as known from the
standard Java2 GUI APIs.

The next changes concern the routing engine and even more the included routing table of currently
active subscriptions. Here, we made changes for holding state about the current status of the reloca-
tion process. For normal operation it is enough to hold information about the subscription and the
associated event transport in the routing table. For the extensions we made, additional information is
necessary. Whenever a event router receives a administrative event about a relocating client it has to
check its routing table for the handback provided in the notification. As detailed in Section 5.4, the
main goal within the relocation process is to identify the junction where old and new delivery path of
the client meet. Therefore, two cases can occur: (i) the routing does not hold information about the
client, hence the current event router is on the new delivery path, or (ii) the routing table holds such
information. In case of (i) the event router adds the (new) subscription to its table together with the
handback. This is new to the implementation. In case of (ii) the first router which holds information
about the client is the router “sitting” on the junction. It marks the entry for the client with a flag
indicating that the client is relocating and creates a new relocation event with a special marker set,
indicating that this new event is sent by the router at the junction. The semantics is that of the “fetch”
message described in Section 5.4. Finally, it adds its own router id to the message. This is later used
for identifying the last router with a junction (cf. to Section 5.3.3 for details).

The new message is then handled to the event transport for this client retrieved from the routing
table. As it belongs to the “old” delivery path, it points into the direction of the old border broker.
After this, the event transport is removed and replaced by the event transport the relocation message
was received from and message delivery resumed. Thereby, any newly received notification match-
ing the subscription for this clients is already delivered to the new location and buffered there for
delayed delivery after the relocation process has terminated. The further progress is straightforward
and detailed in Section 5.4. Each router on the “old” delivery path inspects its routing table, retrieves
the routing entry for the relocation client, retrieves and replaces the event transport in the entry and
sends the relocation message into the old direction. Additionally, in case of another junction identi-
fied, the router id in the message is replaced by the own id.

Upon receiving a relocation message, the border broker at the old location of the client also re-
trieves the event transport from its routing table (please note that this particular event transport is an
instance of the ���
�	��������
������ class) and accesses its buffer. The messages are then re-
played using a specialization of the class 
��	
������ stemming from the original implementation
of REBECA. The messages are then replayed in the direction of the junction. However, for safety
and, more importantly, for garbage collection, the received fetch message is sent again “upstream.”
This message then is used as a closing event for this relocation process. Each broker on the path
inspects the message and removes all resources allocated for this client and subscription. This is
done until the first junction in case of a multiple producer scenario is reached. The broker on the first
junction sets the “relocation finished” marker in the message and relays it further upstream. Those
brokers receiving this message now can determine that the process terminated successfully and re-
move the relocation flag from their routing tables. The message is discarded when the new border
broker is reached.

The new border broker then prepends the replayed notifications to the ones received in-between,
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adds them to the associated buffer, and sets message delivery in the event transport to active. By
design the ���
�	��������
������ then delivers the notifications to the client.

9.4 Location-dependent Notification Delivery
Here, we give some details on the implementation of location-dependent notification delivery as it
was implemented in [Mac04]. It serves as proof-of-concept for the algorithm presented in Chapter 6.

The implementation has the goal to show that it is feasible to integrate location information into
the core of the REBECA routing infrastructure. Therefore, we chose to use a location framework
as presented in Chapter 4 and integrate it into REBECA. As detailed before, the location model is
comprised of two parts: the hierarchical symbolic location model as it is used with mobile clients
and the geometric location model for efficient notification/subscription matching for the use in the
routing network. The requirements for the implementation of this model can be summarized as:

• Hybrid model. The model we specified can express geometric as well as symbolic location
specifications. This has to be considered in the implementation. Both should be possible at
the same time.

• Semantic information. Clients of the network possibly want to express location specifications
containing semantic information meaningful to an certain application domain. This is part of
the symbolic location model where strings of text denote a location, e.g., room or floor.

• Efficient subscription/notification matching. Symbolic locations describe a certain area ac-
cording to an underlying semantic model. However, the most flexible model for the use within
the routing network is a geometric model. Therefore, to include the best-of-both-worlds, map-
pings from one domain to the other have to be integrated. The existence of such mappings
is shown in Chapter 4. In the implementation such mappings have to be implemented at the
borders of the network.

• Implementation of the ����� marker. As part of the location model we introduced the special
marker ����� as a generic reference to the current location of a client. The update and evalu-
ation of this marker is delegated to the broker network. Handling of subscriptions holding the
����� marker therefore is a requirement for the implementation.

9.4.1 Location model

The hybrid location model is comprised of two parts: the symbolic and the geometric model. For
the geometrical model it was chosen to specify the underlying characteristics on the basis of a math-
ematical model for geometric primitives. The fundamental aspects of those are prototyped in a set
of abstract foundation classes. They realize the characteristics inherent in each specialization of the
underlying model.

This approach provides an elegant means for implementing mappings from the symbolic model to
the geometric model. They can access any actual geometric model by means of using the methods
specified in the abstract base classes. Hence, a separation of concerns is provided, as the symbolic
model does not have to be aware of the particular characteristics of the specializations of the abstract
classes. For demonstration purpose the model we chose for specialization is a simple model of
two-dimensional primitives.
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+distance() : double
+move() : void

rebeca::location::Point
+distance() : double
+move() : void

rebeca::location::Model2D:Point2D

+distance() : double
+move() : void

rebeca::location::Model3D:Point3D

Figure 9.9: The abstract class ����� and two possible specializations

One characteristics for the description of a geometric location is the existence of a reference
point. This is concretized in the abstract class ����� as shown in Figure 9.9. The interface to the
class ����� has two methods: ����
���$�����% and ����$<�����%. The method ����$% “sets”
the point to the coordinates specified in the argument. Please note that by using a dynamic data
structure for this specification, arbitrary arguments can be used for coordinate specification. Thereby,
specializations of the model can use their own descriptions or number of coordinates contained in the
vector. The other method provided is ����
���$�����%, returning the distance to another point.
Around this minimal abstraction higher level of shapes can be build.

As a foundation for building up more complex geometric figures the base class ���������;

��������� is introduced. We showed its UML description and its most important relationships to
other classes in Figure 9.10. The class ������������������ is meant as the most basic building
block for geometric shapes. For ease of use this class already holds methods for testing containment
of and overlapping with other geometric primitives. The method ����
���$% is overloaded to test
if a point is contained within the given geometric primitive. Additionally, methods are provided for
the management of primitive geometric objects. These are ����$%, ������$%, ���������$%, and
�������������=$%. They have the obvious semantics and details are left out here. The only
method more remarkable is �������������=$%. When called an object of the (abstract) type
����������= is returned. A bounding box is used to speed up notification/subscription match-
ing within the routing infrastructure. A bounding box is a simple geometric shape approximating the
contained complex shape. Usually boxes or circles are used as bounding boxes because inclusion
or overlapping can be tested easily. However, using a bounding box obviously introduces imperfect
matching as regions of shapes might overlap when using a bounding box but were not overlapping
if perfect matching is used.

We chose to include this approach as we consider performance of notification matching in the
infrastructure more valuable than network traffic generated by imperfect matches. In the worst case,
finally at the last broker on the path towards a client perfect matching is applied and therefore false
matches are eliminated. This is reasonable because clients often are connected to the network via
low-bandwidth wireless connections. Here, it makes sense to reduce network traffic as much as
possible as well as relieve the client from discarding false matches by itself.

The last abstract foundation class we introduce here is the class �����������
��. It is the core
abstraction for defining complex geometric shapes. This class has to be specialized for describing
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+contains() : Boolean
+contains() : Boolean
+overlaps() : Boolean
+move() : void
+moveTo() : void
+getCenter() : rebeca::location::Point
+getBoundingBox() : rebeca::location::BoundingBox

rebeca::location::GeometricPrimitive
+contains() : Boolean
+cointains() : Boolean
+overlaps() : Boolean

rebeca::location::BoundingBox

+distance() : double
+move() : void

rebeca::location::Point

+contains() : Boolean
+contains() : Boolean
+overlaps() : Boolean
+move() : void
+moveTo() : void
+getCenter() : rebeca::location::Point
+getBoundingBox() : rebeca::location::BoundingBox

rebeca::location::GeometricPrimitive2D

+contains() : Boolean
+cointains() : Boolean
+overlaps() : Boolean

rebeca::location::BoundingBox2D

+distance() : double
+move() : void

rebeca::location::Point2D

+addPrimitive()
+contains()
+contains()
+getBoundingBox()
+getPrimitives()
+overlaps()

GeometricShape

*

1

+addPrimitive()
+contains()
+contains()
+getBoundingBox()
+getPrimitives()
+overlaps()

GeometricShape2D* 1

Figure 9.10: The abstract classes ������������������ and �����������
��

real-world objects in a certain geometric model. The semantics of this class is to provide a uniform
wrapper for accessing instances of ������������������s. It semantically wraps a number of
geometric primitives, which together represent a certain object in the real world. Therefore, the class
holds methods for (a) evaluation of overlapping and containment and (b) methods to add and retrieve
the wrapped primitives. The methods for (a) are ����
���$%, again as overloaded variant with either
����� or �����������
�� as parameter, and ����	
��$�����������
��%. Methods for (b)
are 
�����������$������������������% and �������������$%, with the obvious meanings.
Each instance of �����������
�� holds a list of (lower level) geometric primitives and together
they form a geometric shape which corresponds to an object in the real world.

For testing overlapping and containment an external object calls the appropriate method together
with the shape to be tested against the shape called. Instances of ������������������� included
in the shapes are tested pairwise by calling the delegate methods ����
���$% or ����	
��$%,
respectively, in the ������������������. For overlapping it is sufficient if one of the tests is true,
i.e., at least one geometric primitive overlaps with an area described in the second primitive. For
containment, each geometric primitive of the one shape must be contained in one or more primitives
of the other shape.

As all the classes described above are abstract, for using them at least one specialization must
be implemented. For demonstration purposes we have depicted one possible specialization in Fig-
ure 9.10: an implementation for the handling of two-dimensional shapes. This model is sufficient
for, e.g., the handling of movement of people on the basis of floor plans as introduced earlier in this
thesis.

In order to make the classes described above more easily to handle, the class ���������
�
���
was introduced. One of its main tasks is to instantiate geometric objects when needed. The class
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+primitiveAroundShape()
+primitiveAroundPrimitive()
+createShape()
+createPrimitive()
+createPoint()

GeometryManager

+createPrimitive()
+createShape()
+descriptorToShape()
+lookup()
+primitiveAroundShape()

LocationModel

+addPrimitive()
+contains()
+contains()
+getBoundingBox()
+getPrimitives()
+overlaps()

GeometricShape

+contains() : Boolean
+contains() : Boolean
+overlaps() : Boolean
+move() : void
+moveTo() : void
+getCenter()
+getBoundingBox()

rebeca::location::GeometricPrimitive

+addChildLocation()
+addNextLocation()
+buildPaths()
+getArea()
+getChildren()
+getDescriptor()
+getName()
+getNextLocations()
+getParents()
+getPaths()
+getUUID()

SymbolicLocation

+getArea()
+getAreaName()
+getLocation()
+getPathElements()
+getText()
+hasSymbolicArea()
+hasSymbolicLocation()
+isValid()

LocationDescriptor

+resolve()

WildcardResolver

Figure 9.11: The class ���������
�
���,�����	�����
����, and ���
��������	 and their re-
lation to the geometric model

���������
�
��� also is responsible for creating geometric shapes out of a textual description,
i.e., is the main access point for translating symbolic locations into the geometric representations
used within the infrastructure.

The methods ���
�������$������%and ���
�����������$������%create a point or a prim-
itive geometric shape out of a textual description as specified in the symbolic location model. The
method ���
����
��$����% creates an object of type �����������
�� out of the List of ge-
ometric primitives contained in the ���� object in the argument of the method. More remark-
able are the two methods ���������"��������������$������> ������������������% and
���������"�������
��$������> �����������
��% of the class ���������
�
���. They re-
turn objects which encapsule the primitive or shape given as second parameter according to the
textual description given as first argument. This is needed for realizing textual descriptions like
“circle(3)@/some/location”. “/some/location” is translated into the corresponding geometric shape
and then a new circle is generated that encloses “/some/location.” However, at this point, we are
aware that location descriptions like the one above are semantically problematic. With respect to the
specification “circle(3)” it is apriori unclear to what part of “/some/location” it relates to. Possible
choices are: (i) the center of “/some/location” (such that the resulting circle might be contained in
the location specified by “/some/location”); or (ii) the point with maximum distance to the center
of the location and then plus the distance specified in “circle(3),” resulting in a circle larger than
“/some/location” by design. We have illustrated this in Figure 9.12 on page 160.

However, we deliberately chose to not preclude this ambiguity but to delegate the specification of
the actual semantics to the specializations of the location models according to their special needs.
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circle(3)

/some/location

(a) Relative to center

circle(3)

/some/location

(b) Relative to border

Figure 9.12: Possible semantics of location specifications

In the simple two-dimensional model we chose as a proof-of-concept realization the semantics is
defined as shown in Figure 9.12(b), i.e., relative to the border of the location specified. Future work
can extend the model in a way that the behavior can be parameterized to accommodate the actual
need at runtime of the system.

Finally, in Figure 9.11 on page 159 we have shown the foundation classes for handling symbolic
location specifications. The most important classes are �����	�����
���� and ���
��������	.
The class �����	�����
���� encapsulates the behavior of a symbolic location as specified in Sec-
tion 4.3.4 for the location domain model. There, a symbolic location model is specified which can
be organized as tree or lattice structure by using the inclusion relationship. Consequently, the classes
representing the symbolic model have methods reflecting the creation and use of this hierarchical
structures. The methods ����
�����$% and ������	����$% are used for the traversal of the inclu-
sion graph. For a given �����	�����
����, they return the list of parent (or children, respectively)
�����	����
�����s. This is used for mapping geometric locations to their symbolic counterparts
and for resolving path descriptions.

A hook to the geometric model is provided by the method ���"��
$%, which returns the geo-
metric representation of the specified symbolic location as an object of the type �����������
��.
���9
��$% and �������������$% return the name of the location or the symbolic description, re-
spectively. The former is used in conjunction with symbolic specifications in subscriptions, the latter
for correctly resolving specifications like “room@/some/location.”

The method ���9�=����
�����$% is the concretization of the movement graph as introduced in
Section 4.4.4. It returns a list of �����	�����
����� a mobile object probably can reach in the
near future. We have not laid great emphasize on adaptive behavior and heuristics for the prediction
of probable future locations of a client. The implementation of this method is rather static and
straightforward. For future work, obviously, this is an issue worth spending some time on.
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+addPrimitive()
+contains()
+contains()
+getBoundingBox()
+getPrimitives()
+overlaps()

rebeca::location::GeometricShape

+getArea()
+getAreaName()
+getLocation()
+getPathElements()
+getText()
+hasSymbolicArea()
+hasSymbolicLocation()
+isValid()

rebeca:location::LocationDescriptor

+getDescriptor()
+getUUID()

LocationSubscription

+match()
+getEventClass()
+covers()
+merge()
+identical()
+overlaps()

LocationFilter

+getShapes()
+getSymbolicLocations()

rebeca::event::LocationEvent

Figure 9.13: Main classes for location-dependent subscriptions

The last class we want to introduce here is ���
��������	. It integrates the classes described
above into a complete model and serves as central entry point to the system. Therefore, the realiza-
tion is done using the Singleton design pattern, i.e., at any given time only one instance of the class is
active and can be accessed by the static method �������	$%, which returns a reference to the active
object. This way, access to the model can be realized from arbitrary parts of the system. The method
	�����$������% returns a list of symbolic locations matching the location specification provided.
As we allow wildcards, more than a single location can match the specification.

For the mapping of symbolic descriptions to geometric objects the method ������������;

��
��$���
��������������% is provided. It maps the given ���
�������������� to its corre-
sponding geometric objects. A ���
�������������� encapsulates an expression of the location
description language and provides for easy access. Contrary to the more simple 	�����$% method
of ���
��������	, complex path descriptions like “hall@/*/piloty/*/” can be mapped to the geo-
metric model by a single method call.

Additional methods are provided in ���
��������	 for handling geometric primitives but they
are simply delegated to a corresponding ���������
�
���.

9.4.2 Location-dependent Routing

For location-dependent message routing it is necessary to introduce a set of new filter classes into
the filter model of REBECA. These are shown in Figure 9.13. Naturally, there exist the usually com-
plementary set of subscription, filter, and event for location-dependent routing. In this concrete case
these are the classes: ���
����������������, ���
����7�	���, and ���
���������. In Fig-
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ure 9.13, we have also shown the dependencies of this classes in order to illustrate the relationships
between the filter model and the location model.

A location-dependent subscription enters the system by means of an instance of type ���
����;
������������. The location specified can be retrieved by calling the method �������������$%.
This method holds the hook to the location model in use, as it returns an object of the type ���
����;
����������which directly can be accessed to map the specified symbolic location to a correspond-
ing geometric representation by calling the ���"��
$% method provided.

This information is then used to create a ���
����7�	��� adhering to the filter semantics used
within REBECA. This class provides minimally the usual �
���$%method. Additionally, it can pro-
vide methods for more advanced routing strategies, indicated by the methods ������$%, �����$%,
and �������
	$%, corresponding to the appropriate routing strategies with the same names. How-
ever, one additional method is necessary to facilitate for location-dependent routing, namely the
method ����	
��$%which tests for overlapping between a filter and a notification. Here the design
of the location model pays well, as this call is directly delegated to the appropriate object of the type
�����������
��which does the actual testing (cf. Figure 9.13). For every location model used the
interface for testing overlapping remains the same.

Location-dependent routing remains the same as in the standard case. An incoming notification N
is tested against the subscriptions in the routing table of a message router. If the subscription matches
the notification, it is forwarded as indicated in the routing table via the associated event transport. As
described above, testing for matching is done simply by calling the method ����	
��$���������;
��
��%.

An additional extension was made for mobile devices with limited resources available. The hybrid
location model makes it necessary to map symbolic locations as used within a mobile application to
a geometric representation. We consider this translation step as being too complex to require a mo-
bile device to do it itself. Therefore we devised an intermediary, providing an event broker interface
to the application running on a device, on the one hand, and delegating the actual translation to the
first hop in the infrastructure, on the other hand. The class �	����
��������������� implements
such behavior. To the client it acts as a local event broker, but to implementations of �����
�����
it acts the same as the standard implementation of 
����������������. Therefore, a client can
use symbolic descriptions within its subscriptions without the need to translate the subscription into
a geometric representation. This is then done in the border broker the client is connected to. There a
location-dependent subscription is handled as follows: (i) the subscription already carries a geomet-
ric location, then the subscription is simply forwarded according to matching advertisements. (ii)
the subscription only carries a symbolic description. Then the symbolic description is resolved by
calling ���
��������	)��������������
��$���
��������������% and the geometric repre-
sentation is added to the subscription. The symbolic subscription remains part of the subscription
and is piggyback for potential further use. After the translation step the subscription is handled as in
(i).

For the use together with the class �	����
��������������� it was necessary to introduce the
second step in the border brokers of the system. Otherwise it would be the responsibility of the local
event brokers on the devices. By handling both in the border brokers, either solution is possible.

9.4.3 Routing with Mobile Objects

In Chapter 4 we defined the specification language for subscriptions in a way that it is possible for
mobile clients to express their interest in information related to the current position. The inherit
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semantics is that the subscription virtually “moves” when the client moves. This way, the client
always only receives information matching the location-dependent subscription and therefore is valid
for the current position.

We bound this special semantics to the special marker ����� as part of the specification language
for subscriptions. As the name suggests, it then acts as a placeholder for the current position of a
client. The most basic use is in subscriptions of the form “area@MyLoc.” However, as discussed
earlier the problem arises how this marker is actually resolved to the position of a client. We specified
the semantics in a way that the responsibility for updating the current position is delegated to the
notification service and part of its subscription processing. On the other hand, we consider location
tracking and administration as an orthogonal concern to the work presented here and should not be
part of a notification service. Therefore, as shown in Figure 4.9 on page 73, we assume an external
source for such information.

However, an external location service has to be integrated into the notification service to some
degree as it has to gain knowledge about new subscription with the ����� marker, on the one hand,
and it has to issue new location update events in case a new location for a client is detected. With-
out going into details, this integration easily can be achieved by using the well-known observer
design pattern implemented by an appropriate observer for location changes for known clients. It
then acts as event broker to the notification service (and therefore receives new location-dependent
subscriptions) and registers for location changes of known clients with the external service. Every
time a client’s location change is observed, an appropriate ��������
������� is generated and dis-
patched into the notification service. We have shown the corresponding class and its dependencies in
Figure 9.14. In the following we assume facilities for observing location changes of mobile clients
to be in place. Please note that we also have to assume that clients can be identified throughout a
“session,” i.e., we have to assume that the location service and the notification service have to have
a common understanding about a client. The handbacks used in the previous section in general are
not sufficient for this purpose. Therefore, for the sake of simplicity we assume Universally Unique
Identifiers (UUID) for this purpose. In case of an explicit log-on to the network these can be gen-
erated automatically, otherwise the identifier must be provided by the client and accessible by the
location service. This is the case, for example, when badges or RFID tags are used.

In the following we sketch the behavior of a broker receiving a location-dependent subscription
from a client. The initial processing of the subscription of type ����������������� is straight-
forward. It is comprised of the two main parts: (i) the identity of the client which can be retrieved
by calling the �����+�$% method on the subscription and (ii) the location-dependent subscription,
accessible by calling �������������$%.

Obviously, if this subscription is the first subscription of this client at this broker, the UUID
is unknown initially and therefore the current position cannot be resolved by the broker. Then,
the subscription is stored in the broker for later activation. Additionally, the broker subscribes to
notifications of the appropriate type ��������
������� for this client. Thereby, eventually it will
receive a notification with the last heard position of the client.

Please recall that the location service has an observer attached that acts as if it is an event broker
and therefore eventually will receive this subscription for ��������
�������s. At the same time
a delivery path between border broker and location service observer was built up. According to the
UUID enclosed in the subscription the location service is queried and the current position retrieved.
The location service observer then generates a new ��������
������� and publishes it into the
notification service. Each router on the path forwards the event into the direction of the border
broker.
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+match()
+overlaps()
+...()

rebeca::Filter

+toString()

rebeca::event::AdminEvent

+match()
+overlaps()
+...()

MyLocUpdateFilter

+getLocation()
+getUUID()

rebeca::event::MyLocUpdateEvent

+getDescriptor()
+getUUID()

MyLocSubscription

+getArea()
+getAreaName()
+getLocation()
+getPathElements()
+getText()
+hasSymbolicArea()
+hasSymbolicLocation()
+isValid()

rebeca:location::LocationDescriptor

Figure 9.14: The ��������
������� and its filter

Please note that without explicitly sending an initial ��������
������� the client might never
receive any notifications. The generation of such events is normally tied to a position change of the
client in the real world. As long as a client does not move, no notifications are generated. To avoid
such “starvation” an initial notification for the current position must be generated.

The behavior of a broker receiving a ��������
������� is as follows:

• If the UUID in the ��������
������� is not known, then process the message as any other
notification, i.e., it is forwarded into the directions indicated by the routing table.

• Otherwise:

– Call ���
��������	)	�����$	��
����������% to resolve the location contained in
the message.

– If the old location is the same as the new one, do nothing.

– Otherwise:

∗ Retrieve and then store current and possible next locations of the client in a List L.

∗ For each location loc in L: subscribe(loc), based on the original subscription of the
client.

∗ For each location loc′ in the active set of myLoc subscriptions and that is not in L:
unsubscribe(loc′).
∗ If the client has subscribed to myLoc updates: propagate the message to the client.

One aspect of the algorithm described above is that the broker not only subscribes to the current
location of a client but also to locations which are probable next locations of a client. This realizes
the concept of uncertainty as described in Chapter 6. The determination of the actual degree of
uncertainty is delegated to the location model and independent from both, the client and the bro-
ker. Thereby, certain local peculiarities can be handled more easily and adaptive behavior can be
implemented there. However, this partly is left for future work and the current implementation uses
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a fixed behavior. We extended the class 
�������
�	� to optimize the behavior of routing with
“deactivated” subscriptions. A subscription is deactivated if it belongs to the active set of myLoc-
subscriptions of a client, but the client is not known to have moved there already. Therefore, the
behavior of the extended routing table is changed accordingly. It can ignore currently deactivated
subscriptions which avoids significant overhead for evaluating (and later discarding) notifications
for such locations. The main advantage is that the broker does not have to test notifications before
sending them to the client by calling the �����������
��)����	
��$�����������
��%method
for deactivated entries in the routing table.

It is to note that again this extension is mainly part of the border brokers at the boundaries of the
system. Within the broker network only geometric representations are used. The inner routers are
not aware of the existence of a myLoc marker. Any translation necessary always is done in the border
brokers at the system’s boundaries. On the other hand, we chose to piggyback the original location
descriptor to any notification and subscription mapped from the symbolic to the geometric model.
Thereby, no information loss happens and a client can access any location information. A client
which is interested in its own location and location updates can subscribe to its own location update
notifications and a �����9���&��
��������� is sent every time a location change is observed,
holding the symbolic and geometric position information.

Finally, we want to sketch the behavior of a border broker in case of an unsubscribe to the last
subscription:

• Unsubscribe to all subscriptions related to the current position of a client.

• Update the routing table and remove all deactivated entries for future positions.

• Unsubscribe to myLoc update notifications for this client.

• Remove any other management information related to this client.

9.5 Miscellaneous

The ideas presented in Chapter 7.1 and in particular the algorithm introduced in Section 7.2 currently
are under development. Details will be available soon in [Gue04] and are omitted here.

A working prototype from the health care domain was developed using parts of the approach pre-
sented in Chapter 8. Details are available in [Rei02]. However, there the goal was to design an
personal health care monitor application using the ContextToolkit API [SDA99]. Although vaguely
related in some aspects to work presented in this thesis, the version of the API used for the pro-
totype implementation was strongly based on synchronous and direct client/server communication.
Therefore, details about the actual implementation do not add to this thesis and consequently are
omitted. Nevertheless, the work in [Rei02] strongly showed the usefulness of the process of context
abstraction and aggregation and was used extensively.

9.6 Summary

In this chapter we explained important details of the design and implementations done related to
this thesis. As the basis of all extensions, we leveraged an existing implementation of a distributed
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notification service, namely REBECA. Therefore, as a starting point, a comprehensible walkthrough
in Section 9.2 gives an overview of its features.

Then we focused our discussion on two main aspects: first, the extensions made to facilitate
generic support for mobile clients, which have to conduct their operations in an unstable and chang-
ing environment. And second, the changes necessary for facilitating location-dependent subscrip-
tions.

We tackled these two aspects in separate sections. In Section 9.3, we showed how the REBECA

notification service was extended in such a way that mobile clients can be used in conjunction with
the core REBECA system. We grouped our discussion around the two main challenges hindering such
integration. The first is that mobile clients regularly disconnect and reconnect to the network. This
behavior constitutes a semantics that is contradicting the semantics found for “traditional” message
routing in distributed systems. We clearly showed that by using intermediaries between the mobile
system and the routing infrastructure this issue can be resolved and both semantics remain intact.
As a side effect, the underlying functionality for conventional message routing is not impaired. The
second issue tackled is that for relocation we have to superimpose a stateful process onto the inherent
stateless message routing paradigm. Again, we gave an implementation that reached this goal with
minimal changes made to the original design. The changes were devised in a way that they are
completely orthogonal to the existing functionality.

We then showed in Section 9.4 how location information as a valuable source for context-dependent
applications can be integrated into the very same notification service. The challenge here was to find
a tradeoff between the usability of location-specification for clients and the requirements of effi-
ciency as found in event systems. We therefore put to use our reference model for location specifica-
tion as introduced in Chapter 4 and applied it to the problem at hand. To do so, we had to integrate it
into the broker infrastructure, again as an orthogonal concern to the normal operation of the system.
This could be achieved by leveraging the extensible model of “plug-ins” as specified by REBECA,
on the one hand, and by restricting the necessary changes to the core functionality to happen at the
boundaries of the system, on the other hand. Here, we refer to the mappings from symbolic descrip-
tions to geometric representations and the special placeholder myLoc. This special marker relieves
the clients from being aware of their movements and the otherwise necessary “manual” updates for
their subscriptions. As required in Chapter 2, the infrastructure takes care of this.

To summarize, this chapter gives a clear picture of many aspects of the implementations done in
the context of this thesis. Sufficient proof-of-concept systems were built, not only to show that the
design choices made earlier in this thesis can be implemented, but also to show that the algorithms
are specifically designed with two main aspects in mind: first, the underlying notification service’s
semantics has to remain intact and second, it also can be leveraged for the extensions necessary for
mobile clients and their needs.

������������



10 Conclusion

Great things are done when man and mountains meet.

William Blake, artist (1757-1827)

Many researchers and analysts expect the mobile user of tomorrow to live in a world full of
digital services and artifacts. Those are embedded into a larger pervasive and ubiquitous computing
environment. In this scenery of mobile and highly dynamic systems, communication and interaction
plays a role of outstanding importance. It can be foreseen that in environments with a large number of
independent digital services and clients many well-known paradigms for distributed systems simply
fall short. For instance, tightly coupled and peer-to-peer communication is hardly maintainable.
Mobile clients appear and disappear constantly or are frequently switched off for saving energy.
Pervasive systems hence have to cope with a large degree of dynamics and change, which must be
handled appropriately in a loosely-coupled fashion.

Moreover, the need to access different services at any time and any place forces service provision
to shift to a data-centric view on interaction. The actual content of data (“what”) is more important
for applications than the identity of the producer of data (“who”). Consequently, interaction between
producers and consumers is dominated by the active data in the system. The same data-centric view
is necessary when considering the relationships between producers and consumers of data. A single
data item in such large scale settings potentially is interesting for more than a single consumer.
For example, the current reading of a sensor embedded in the surroundings may be used for many
applications that act on the data item. On the other hand, “raw data” is not always suitable as direct
input to applications. Often, on a higher level, the need for aggregation and interpretation exists.
This is especially true for context-sensitive applications, adapting to the environment a mobile client
currently is located at. Adaptation is an important criterion for such applications, as they often react
to events which occur in the real world. For instance, consider the situation where a person enters a
room. While this event happens in the physical world, it also is reflected as notification in the digital
world. Effectively, this requires efficient many-to-many communication together with a number of
operations on such data in the system.

Efficiency of notification delivery is also needed when considering the dimensions such system
are supposed to grow to. Both, in physical extension, as well as computational complexity, pervasive
systems are expected to grow to large scales.

The underlying idea of this thesis was to find answers to the general problem of how the proverbial
billions of mobile and smart devices, services, and artifacts can be orchestrated in such highly dy-
namic environments. Our belief is that this can only be done with strong support from an infrastruc-
ture facilitating common requirements for pervasive systems. The approach we pursued throughout
this thesis was to use a well-known and successfully deployed infrastructure for distributed systems
and evolve it gradually into a new middleware, thereby integrating new concepts and paradigms into
its core functionality. A striking candidate for such an infrastructure to use as a basis is the pub-
lish/subscribe paradigm. It already supports important facets of mobile and pervasive environments,
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like loose coupling and scalability. But, on the other hand, the publish/subscribe paradigm is opti-
mized for rather static distributed systems and therefore in many important aspects falls short for the
intended use in mobile and pervasive systems.

10.1 Results

This thesis shows in general how a distributed notification service can be leveraged to support perva-
sive and ubiquitous computing environments. Starting with a detailed analysis of the requirements
for such support in Chapter 2, we clearly stated where common middleware, as successfully de-
ployed for static distributed systems, falls short under the conditions found in pervasive systems.
Additionally, we identified the key requirements necessary for the support of mobile clients. Of
outstanding importance among those is the proper support for mobility in such settings. Hence,
Chapters 5, 6, and 7, are concerned with the implications of supporting mobility with a distributed
event broker network.

In Chapter 5, the main result is a solution for the transparent support of mobility. Transparency
of mobility is a common requirement for mobile clients that roam freely. Certain aspects of mo-
bility, like the change of broker the client is attached to, are handled transparently for the client
concerned. This transparency is important for the evolution of the publish/subscribe paradigm from
a static system setting towards its use in mobile and hence highly dynamic settings. A relocation
algorithm is presented that facilitates location transparency, offering the possibility to transfer exist-
ing event-based applications to mobile scenarios as well as supporting mobility-aware applications.
The solution is based on the detailed analysis of the requirements for such support and clearly shows
its impact on the underlying publish/subscribe notification service. The algorithm seamlessly ex-
tends the existing content-based routing infrastructure, the REBECA notification service, to support
non-interrupted, sender-FIFO ordered delivery of notifications to moving clients, which need not to
be aware of this extension. This is of particular importance for the use together with legacy appli-
cations. Moreover, no central repository or control nor any communication outside of the publish/
subscribe infrastructure is needed. On the other hand, applications can still benefit from the service’s
inherent mechanisms, like advanced routing algorithms. The presented solution for mobile clients in
publish/subscribe systems transfers the characteristics of the publish/subscribe paradigm to mobile
scenarios in an appropriate way. Loose coupling and drawing from notification delivery localities is
explicitly supported.

Chapter 6 advances support of mobility in the infrastructure an additional step further and intro-
duces location-dependent subscriptions and notifications. Together with the foundations of location
models and the reference location model introduced in Chapter 4, the publish/subscribe infrastruc-
ture can cater to location-sensitivity of mobility-aware mobile clients. The main challenge here is
twofold: first, the details of adapting location-dependent subscriptions after location changes have to
be handled in the infrastructure, as opposed to a naïve implementation, where the client handles them
itself; and second, efficient, non-interrupted notification delivery can degenerate to network flooding
without proper countermeasures in the publish/subscribe notification service. Network flooding is
costly and easily can render a small, resource-limited device useless, due to the need for client-side
filtering. We introduced an adaptive algorithmic solution which addresses the challenges named
above. Furthermore, mobile clients can make use of a specification language for stating their interest
for location-dependent information. Location-dependent subscriptions subsequently are evaluated
and adapted by the broker network. Additionally, an explicit placeholder (�����) is introduced,
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stating the interest in some information relating to the current position. Adaptation of this place-
holder is done in the infrastructure. Moreover, by using location-dependent subscriptions, the client
defines the range of relevant information for its thread of execution. This is leveraged for constrain-
ing the degree to which uncertainty of location-related message delivery is necessary to allow for
an uninterrupted and timely delivery without resorting to network flooding. Thereby, an effective
means to express and implement location-awareness is introduced.

However, neither solution can prevent that a client needs a certain initialization phase to prop-
erly adapt to location or context changes. Mobility support, as introduced in Chapter 5, decouples
producer and consumers of non-context-dependent notifications in space and time. Chapter 6, on
the other hand, minimizes the bootstrapping latency of clients depending on location-dependent data
within the boundaries of a single broker. The solution presented in Chapter 7 combines the char-
acteristics of both approaches for roaming clients. In general, only after some sequence of events
an application commences its normal operation from a valid state. Due to the asynchronous nature
of event-driven systems, this can severely impair the usability of the publish/subscribe paradigm in
pervasive systems. Hence, we devised techniques in the infrastructure, enabling a mobility-aware
client to access notifications already delivered in the past. The main problem we addressed is the
minimization of the time-span a client has to “listen” to a concrete stream of event notifications
before it is able to resume operation. This latency time can become a major problem in scenarios
where clients are roaming. As an example we employed a common scenario where a roaming client
misses some crucial information by the proverbial “fraction of a second”, leaving an application at
a new location in an inconsistent state. To address this problem, we established additional buffers in
the broker network of the distributed notification service. Additionally, we devised a set of search
and consolidation strategies tailored to minimize the bootstrapping latency experienced by a client
attached to the broker network. Thereby, a considerable and important decoupling of producers and
consumers in space and time is achieved.

One of the central results of Chapter 2 is the identification of context as a necessary source of
information for the operation and adaptation of a context-aware application, as well as an important
factor for the optimization of message delivery in the infrastructure. In general, applications that
make use of external information in order to react to changes in a volatile execution environment
are reactive in nature. This reactive and adaptive behavior has a serious impact on the programming
model as well as the data model an application has to cope with. In Chapter 8 we introduced a model
for the structured development of such context-sensitive applications. We leveraged the notion of
control-based coordination as a convenient abstraction for the specification of applications based on
finite state machines. Then, we showed how this specification can be mapped to a proper set of
subscription operating on data available in the current execution environment. The main challenge
we faced was the heterogeneity of the data sources common in pervasive computing systems. We
introduced a formal framework for the structured mapping of a task-oriented and control-driven
application specifications to data items and sources available in the system. This included the use
of certain operations on actual data items, such as aggregation, composition, and interpretation of
notifications.

Summing up, this thesis presents several important and novel extensions for evolving the pub-
lish/subscribe paradigm into an efficient and convenient means for communication and interaction
in pervasive computing environments. We analyzed the key factors where pervasive computing en-
vironments fundamentally are different from conventional distributed systems. Subsequently, we
showed the general appropriateness of the publish/subscribe paradigm for facilitating some of the
basic requirements in highly dynamic and mobile systems. But in several aspects publish/subscribe
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falls short. There, we introduced necessary extensions which address the shortcomings of publish/
subscribe, like support for mobile clients or location- and context-awareness. A distributed publish/
subscribe notification service with the extensions presented in this thesis constitutes an appropriate
platform for building pervasive and ubiquitous computing systems.

10.2 Future Work
Obviously, a number of issues have not been discussed further in this thesis and should be the subject
of further research.

In this thesis we have taken a rather opportunistic approach for the decoupling of producers and
consumers in time. The general topic of caching and event histories in a distributed publish/subscribe
notification service opens up a wide area of research opportunities. Especially its application to
mobile systems, as we have done in this thesis, raises important and interesting questions. For
instance, optimality of buffer placement in the network strongly depends on the degree of location-
dependency of subscriptions and notifications and is hardly tackled.

Another important issue in pervasive computing systems is the question of security and trust. In an
ever changing and potentially hostile environment, in the long term, it is of vital importance to have
some means to protect clients from malicious surroundings and vice versa. This obviously includes
client access control as well as securing the integrity of data in the system. However, only first
ideas on securing distributed publish/subscribe notification services exist (e.g., [DKHP03; BEP +03;
WCEW02; FZB+04]), leaving open a wide field for future research.

The last item we want to mention is the issue of scaling down the infrastructure for a more flexible
and versatile range of possible system domains. Currently a nomadic system model is assumed.
Moreover, the publish/subscribe service itself relies on rather reliable and static connections be-
tween the brokers. However, in more dynamic settings, as we envision them for example in wireless
sensor networks (WSN), those assumptions are hard to maintain. There, the infrastructure itself
must be scaled down and the broker network built-up flexibly and fault-tolerant. Besides first ideas
in [TBF+03], this also is left for future work.

Summing up, this thesis provides numerous solutions to existing problems motivated by using
the publish/subscribe paradigm in pervasive computing systems. At the same time it also raises a
considerable number of questions and shows possible as well as necessary research directions for
future work.
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