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Chapter 1

Introduction

At first I categorize the different kinds of peer to peer systems. After the
reader got a rough idea about peer to peer systems the motivation why
BubbleStorm has been developed is given. In the following the idea behind
BubbleStorm system is explained. In the end of this chapter I summarise
the related work which has helped to develop BubbleStorm.

1.1 Peer-to-Peer Systems

Peer-to-peer computer networks rely on the computing power and bandwidth
of the participating peers. There is no need for central servers. Each peer
is client and server simultaneously. The network is typically an overlay net-
work, placed on top of an existing one, for example the Internet or a LAN.
Such a network has many purposes and advantages. In contrast, a client of
the common client-sever model always communicates with a central server.
Servers are expected to only reply to requests of clients. There is no ex-
change between other clients. This makes the server an expensive hot-spot.
Peer-to-peer networks take the idea to share the load between the nodes
participating. This reduces hot-spots and costs for example. Possible appli-
cations, that can be build on peer-to-peer networks, could be a distributed
wiki, file sharing, peer-to-peer telephony, real-time data streaming like radio
and television, instant messaging, chat or multiplayer gaming.
Typically peer-to-peer systems are used to exchange messages with the peers
participating in the network. In order to be scalable a peer node sends mes-
sages only to a part of the network1 or to servers that arbitrate requests2.

1This applies to decentralised strategies
2This is the case for centralised peer-to-peer systems
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6 CHAPTER 1. INTRODUCTION

E.g. Gnutella3 uses a limited flooding of requests. This primitive approach
controls only the depth of the flood, therefore the number of hosts reached
is dependent of the degree of the single nodes encountered in the flood.
Peer-to-peer systems are differentiated by their topology. Either a peer-to-
peer network is centralised (hybrid) or it is decentralised (pure). Decen-
tralised networks can be split up in structured and unstructured systems.

Types of peer-to-peer systems:

• hybrid peer-to-peer
Requests of peers are processed by central servers4. The server acts like
an index for content and arbitrates the requester to a peer that provides
the requested content. The requested information is then transferred
directly from peer to peer.

• pure peer-to-peer
This kind of network does not have any clients and dedicated servers
but only equal nodes which are called peers. These peers act as client
and server at the simultaneously to the other nodes in the network.

– unstructured
In unstructured peer-to-peer networks each node is connected ar-
bitrarily or randomly, which is the case for BubbleStorm, with
nodes in the network. The construction of such networks is very
easy, because a new peer can simply copy the neighbours of a
known participating peer or send join messages over a random
walk to a participating peer, which connects to the new peer.
Most approaches in such networks use limited flooding as a means
to distribute messages or requests. It has to be limited, because
complete flooding would overload and dramatically slow down the
entire network. On the other hand may limited flooding not al-
ways yield a satisfying result, because only a small part of the
peers can process the request. This makes rare data hardly to
find.

– structured
A structured peer-to-peer network typically assigns keys to data
items that are mapped to the nodes that provide this content. In
contrast to centralised networks the index is not kept at a specific
server, but is distributed over all nodes. Each node is responsible

3Gnutella is a well-known decentralised unstructured network. See [11]
4An example for this kind of network is Napster. See [9]
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for some of the key - value pairs. This improves the performance
of finding items, but has also weaknesses when a peer crashes or
if it is not powerful enough to handle a popular key.

1.2 Motivation

Probably the most important property of peer-to-peer systems is the search
for services provided by other peers. Centralised systems are mostly only
scalable under special conditions and do not fully exploit the heterogeneity
of the peers. The decentralised solutions work on either structured or un-
structured topologies5. Some systems provide exhaustive search by utilising
hash tables for keywords, others allow range queries renouncing exhaustive
search.
Although structured peer-to-peer systems only provide exact match queries,
some are modified to provide keyword search6. This is only possible in an
even more complex manner. The advantage is that it provides an exhaustive
search, so that it allows to find even rare items if they exist in the peer-to-
peer overlay network.
However, unstructured peer-to-peer systems usually don’t provide exhaus-
tive search nowadays. E.g. Gnutella, which is a well known unstructured
peer-to-peer system, uses a limited flooding in order to find content. It is
clear that this approach is not scalable and usually does not find rare items,
if these items are not in the direct neighbourhood of the searching peer. But
Gnutella-like systems have the advantage that they naturally provide key-
word search and range queries, because every peer searches locally stored
data and does not use a distributed hash table (DHT) like structured sys-
tems.
BubbleStorm is an unstructured peer-to-peer system, which provides exhaus-
tive search with probabilistic guarantees, while simultaneously minimising
the message overhead. Since BubbleStorm is unstructured, messages have to
be evaluated a the peer that received it. Developer can create customised
applications that provide keyword search and/or range queries at each node.
Although analytical work has already been done [18] and the system has
already been simulated without an underlying network [17], a prototype for
testing BubbleStorm under real conditions. So the theoretical and simulated
results can be reflected.

5See 1.1 for differences between these systems
6E.g. [14] uses keyword with a distributed hash table (DHT)
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1.3 The BubbleStorm approach

Terpstra, Leng, and Buchmann developed a peer-to-peer system called Bub-
bleStorm. This work is based on the results they present in [17, 18]. Bub-
bleStorm is a heterogeneous peer-to-peer system that was designed to solve
the rendezvous problem. It provides exhaustive search by sequential scan.
Hot-spots are avoided by the topology that incorporates heterogeneity. The
BubbleStorm system is a pure peer-to-peer system. It is unstructured in the
sense that the placement of a node in the network is random and the nodes
have no special function depending on their position in the network. This
means that the arrangement of the nodes do not need a certain structure.
BubbleStorm uses a self organising algorithm which align nodes in a circular
connected graph in order to retain a connected graph while keeping a pre-
defined amount of neighbours and simultaneously providing a place for new
nodes.
The topology of BubbleStorm uses a random walk for establishing a multi-
graph. This multigraph is arranged as a circle, where the nodes are randomly
permuted. Topology maintenance is simple, because its operations are local,
atomic and minimally disruptive. It supports heterogeneity by choosing the
individual node degree proportional to bandwidth and computing power of
each peer. The degree of a node should be > four in order to ensure con-
nectivity with high probability even if some nodes fail. Euler proved that a
circle exists in a graph if every node has an even degree which means that
each node in the BubbleStorm multigraph should have an even degree.
BubbleCast is a communication primitive, that is built on top of the topology.
It induces subgraphs (so-called bubbles) of controlled size. The BubbleCast
distribution forms a bubble of nodes, that received this particular BubbleCast
message. It exploits the birthday paradox for doing an exhaustive search by
creating a random bubble for each meta-data and request. If a node gets
both, it acts as a mediator for requester and provider. BubbleCast bubbles
can be incrementally enlarged, if the current results are not satisfying yet.

1.4 Related work

In this section I abstract the work that helped to develop the BubbleStorm
peer-to-peer system. At first the most important properties, efficient search
and scalability, for BubbleStorm are examined. Afterwards peer-to-peer sys-
tems are researched refering to heterogeneity and user behaviour. The ideas
of the last part are the basis for the measurement part of BubbleStorm.
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1.4.1 Efficient Search in peer-to-peer networks

Finding information and provided services is probably the most important
use of a network of distributed peers, that provide content. Therefore effi-
cient methods for finding even rare content have been investigated.
In 2002 Cohen and Shenker [5] researched replication strategies in unstruc-
tured peer-to-peer systems in order to improve the efficiency of search in
unstructured peer-to-peer networks. They assume that the access frequency
is known for each item. The conclusion of this work was that the optimal
replication strategy is a replication proportional to the square root of the
popularity of the item. Such a system balances the load optimally. On the
other hand is this system not designed for exhaustive search because such a
system should not distinguish objects by their popularity.
Search and replication strategies are extensively studied in the work of Lv
et al. [12] in June 2002. Besides of that they proposed a search method
based on random walks and active replication combined with uniform ran-
dom graph topology in order to improve unstructured peer-to-peer systems
like e.g. Gnutella[11]. Instead of limited flooding they use random walks.
This way they reduce the network traffic by two orders of magnitude. On the
other hand a single random walk increases the response time by two orders
of magnitude. They broke down the response time by using k random walks
in parallel by a factor of 1

k
. They showed that the used random walks pro-

vide better results if they check periodically with the original requester if the
content has already been found before it proceeds with the next node. They
conclude that active replication7 and uniform sampled graphs yield better
results than passive replication and/or power law graphs. Simulations and
analytical results are presented in their work. A objection could be that they
made gross simplifications relating to a fixed query distribution and a fixed
network topology and do not take exhaustive search into account.
2004 in [16] Sarshar et al. present an efficient exhaustive search for unstruc-
tured peer-to-peer systems like e.g. Gnutella[11]. A random walk is used for
data replication. As a means of doing a search, queries are at first installed
along a random walk followed by partially flooding of the installed queries.
The flooding utilises a probabilistic broadcast scheme, which is called per-
colation search. The system was simulated and analysed and is designed to
perform scalable searches in random power-law networks with a very high
probability of finding even rare items.
The problem of locating any object independent of its access frequency (ex-

7Active replication means that meta information on content, which is available at
certain nodes, is stored at a set of arbitrary nodes. While passive replication means
that data is replicated at a certain node only if the node requested this content.
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haustive search) in an efficient manner was examined by Ferreira et al. [7].
Here they tried to make use of the birthday paradox by locating object ref-
erences on a set of O(γ

√
n) randomly selected peers, where n is the network

size and γ is a free definable system parameter. They guarantee a success
probability of e−γ2

. For distributing the references they used a random walk
of length Ω(log n)+ k more hops. The random walk uses an adaptation of the
Metropolis-Hastings algorithm [1, 8]. Ferreira et al. showed that it is pos-
sible to give probabilistic guarantees for a decentralised search. They used
multiple parallel random walks, so the network does not tend to overload.
Unfortunately, they did not take heterogeneity into account.

1.4.2 Providing Scalability

A big problem of most peer-to-peer systems is that most of them scale only
under special circumstances. This means that the network overloads if too
many peers are connected. There were proposed improvements that seem
to work for now, but it is only a question of time until these improvements
will fail, if the networks keep growing. There exist some ideas to exploit
heterogeneity, which appears to be a good idea in order to make peer-to-peer
networks scalable.
In March 2002 Lv, Ratnasamy, and Shenker proposed a study on heterogene-
ity of the Gnutella peer-to-peer system [13]. This work incorporated capacity
awareness with Gnutella peers. For doing a search, a parallel random walk
on power-law random graphs was used, replacing limited flooding because of
its inefficiency. An attempt was made to let the highest capacity nodes also
carry the most traffic. The Gnutella protocol was extended by a flow control
and a topology adaptation facility. The flow control is solved by letting a
nodea check periodically whether it is overloaded. If it is overloaded, a nodeb

with a high incoming rate will be selected and then redirected to another
nodec with much spare capacity left. If all neighbours are unavailable for
redirecting the overloaded node will request nodeb to reduce the output rate.
They examined only a passive replication strategy combined with a biased
random walk that sends a request to preferably high capacity nodes, that
have not already seen these requests. An implicit weak hierarchy is built,
where weak nodes are placed aside powerful ones, because the probability of
a hit of a certain request increases, if they send requests to high capacity
nodes. The main conclusion was that a decentralised peer-to-peer system,
like Gnutella, can be significantly improved, if it exploits heterogeneity.
In [4] Chawathe, Ratnasamy, Breslau, Lanham, and Shenker proposed a
decentralised and unstructured peer-to-peer network called Gia. Gia is mo-
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tivated by the Gnutella system. It uses one-hop replication and a dynamic
topology adaptation in order to exploit heterogeneity. A token based active
flow control avoids overloading of nodes. Finally, they use a biased ran-
dom walk for queries. The walk is preferable directed toward high capacity
nodes. The nodes in Gia do a one-hop replication, which exchanges meta-
information about owned content with direct neighbours, which improves the
probability that an item can be found. The topology adaptation uses a level
of satisfaction for each node. If it is not fully satisfied, it tries to connect
to more nodes until it is satisfied. High capacity nodes are chosen a higher
minimum level of satisfaction while weak nodes use a lower level. So weak
nodes are implicitly placed next to high capacity nodes, which can act as di-
rectory servers for its neighbourhood. The disadvantages of this approach is
that the dynamic topology adaptation may induce a domino effect, because
if nodea gets a request to add a new nodeb to his neighbours, but the maxi-
mum number of neighbours is already reached, nodea drops a random nodec

of its current neighbours in order to add nodeb. As a consequence nodec may
become unsatisfied and connects to new noded himself. The evaluation of
Gia is based on simulation and doesn’t provide any analytical results.
2003 Bourassa and Holt [3] present the Swan network, which is based on ran-
dom regular graphs. Bourassa and Holt claimed that their network has many
desirable characteristics of random regular graphs. Among these are high
connectivity, logarithmic diameter, self-healing, robustness, easy adaptation,
massively scalable, and high performance. They delete nodes at random,
which corresponds to a failing node, and then add another random node, in
order to create a uniform sampled network structure. The Swan networks are
self-healing after the crash of some nodes, by completing a d-regular graph
among the remaining nodes. Swan networks have two processes for dealing
with lost neighbours. First an inexpensive process that sends messages to
connected nodes, and second a more expensive process that contacts nodes
that are not directly connected to the node that wants to increase its amount
of neighbours. If the graph remains connected, the repairs can safely use the
first repair mechanism. Otherwise the more expensive method has to be
used. The advantage of modelling the network as a random graph is that
this method is very robust even against massive node failures.
Cooper, Dyer, and Greenhill [6] use a Markov chain modelling Swan networks,
described by Bourassa and Holt in [3], which yield its analytical results. Fur-
ther Cooper, Dyer and Greenhill showed that the Markov chain converges
with polynomial speed for the switch operation. Finally, they give an upper
bound of the convergence rate.
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1.4.3 Empiric Studies

In order to build an effective peer-to-peer network, one has to know how the
network is used. There also exist significant differences in the behaviour of
users in peer-to-peer networks.
Saroiu et al. made a study on peer-to-peer file sharing systems in January
2002. In [15] the peers participating with Napster and Gnutella were char-
acterised. Therefore a significant amount of peers have been observed and
profiled. They measured how often peers connect and disconnect from the
system, their bandwidth, latency and availability. Other than that men-
tioned, they analysed how much peers are willing to cooperate. The conclu-
sion of the research was first that in peer-to-peer systems exist a significant
amount of heterogeneity. Second there exist groups of peers that act more as
a client and other act more as a server, although these systems were designed
for symmetry of responsibility. Third, peers misreport information if the mis-
report will yield a significant advantage. In order to get accurate information
of the peers, a peer-to-peer system must directly measure the interested in-
formation or have a method to verify the information that a peer has entered.

1.4.4 Monitoring in peer to peer networks

Measuring network characteristics can be used to optimise network usage.In
[10] Kempe, Dobra and Gehrke researched into decentralised algorithms for
aggregate computations like sums and averages. This algorithm may be used
by peer-to-peer and sensor networks. In order to handle node count fluc-
tuations the measurements have to be constantly repeated after the current
measurement stabilised. The values that should be measured are uniformly
distributed to the neighbours and the node self. If two consecutive distributed
values (d1, d2) are nearly equal, |d1 − d2| ≤ ε, then the measurement is as-
sumed stabilised and a new round is started. Although guarantees of the
results from ‘gossipping‘ are usually probabilistic, the robustness and sim-
plicity is astounding. Each node measures the desired aggregate locally. The
latest results can be spread by existing nodes to new nodes that have not yet
seen any measured results. There are a few drawbacks like a higher band-
width usage and a higher latency until the measurement stabilises compared
to a central collector. Latency is only a problem in a very fast changing
network, since the measurement converges with exponential speed. Results
afford a weak consistency. This means, that exact values can be only obtained
if there is no change in the network structure within a complete round.
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1.4.5 Conclusion

Efficient Search in peer-to-peer networks

In order to improve the load and efficiency of a peer-to-peer system Cohen
and Shenker investigated different replication strategies. They came to the
result that the number of replications should be proportional to the square
root of the popularity of that item. This approach can indeed improve the
load distribution, but it is impractical because the popularity of an item can
not be easily determined or calculated. This method also can not provide an
exhaustive search, which may be desirable for participating peers. Lv et al.
[12] tried to exchange the limited flooding search by using random walks and
active replication within uniform random graphs. Unfortunately they don’t
take exhaustive search into account. A drawback to their approach is that
random walks have a high latency. Sarshar et al. [16] use a similar approach
utilising random walks and active replication for an exhaustive search. The
exhaustive search method used by Ferreira et al. [7] makes use of the birth-
day paradox and is also based on active replication and a random walk for
searching, like Lv et al. [12] and Sarshar et al. [16]. Unfortunately they do
not consider heterogeneity in their work. Network reorganisation due to node
failures and permanent heavy load should be solved locally at each node in
order to minimise the effect on other nodes.

Scalability

Lv, Ratnasamy, and Shenker [13] proposed an enhancement to the Gnutella
protocol that significantly improved the network by exploiting heterogeneity.
The shortcomings are that they only use a passive replication, which leads
to lower query hits and their method of building the network induces a weak
formed two level hierarchy, where weak nodes should send queries to high ca-
pacity nodes. This approach is in very-large networks not scalable, because
if the network grows and many high capacity nodes are on the same level,
the system falls back to the original operation mode.
The idea of using a hierarchy was also taken up by Chawathe et al., who tried
to build a scalable decentralised peer-to-peer system by creating an implicit
hierarchy. They used an active one hop replication and a random walk for
queries, in contrast to Lv et al. [13], and a dynamic topology adaption. This
system is quite complex and since the dynamic topology adaption changes
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the topology of the surrounding neighbours of a node, capacity shortage
problems may be just forwarded, which leads to a change of the topology,
started at a single node, that may involves multiple nodes. Therefore a node
should be able to solve capacity shortages locally without influencing other
nodes. Bourassa and Holt went an other direction, relating to the topology
structure, in their SWAN [3] system. The Swan technology uses a topology
based on random graphs. The random graph is created by doing a random
insertion of new nodes. The changes are only local and minimally disruptive.
As random graphs have good characteristics related to robustness and high
connectivity, these should be implemented in peer-to-peer systems. Over-
all one can say that active replication with some kind of random walk is
currently the only possibility to do a scalable and exhaustive search in an
unstructured peer-to-peer system. Overall one can say that the structure of
a peer-to-peer network as a random graph is a good choice as a structure
for generic networks with heterogeneity and customisable applications, since
this yields some desirable advantages. Nevertheless in case of specific appli-
cations and specific network parameters a certain structure may be exploited
and therefore provide particular advantages.

Empiric Studies

Saroiu et al. presented in their work on peer-to-peer network characteris-
tics [15] a classification of the peers incorporated into the specific networks.
They showed that peer-to-peer system have to deal with heterogeneity and
that a peer-to-peer network should not trust the information, that peers pro-
vide about their capabilities. Instead these systems should verify the entered
information or measure the desired information themselves.

Measurements in peer to peer networks

The measurement methods, described by Kempe et al. in [10], provide good
approximations for aggregates of network information. E.g., the number
of nodes participating in the network can easily be measured. The main
disadvantages are a very high latency and exact results can only be obtained,
if the network is stable. For peer-to-peer networks, where peers often connect
and disconnect, the measurements are never exact, but they have only a small
deviation, that may be tolerated.



Chapter 2

The BubbleStorm System

2.1 The BubbleStorm P2P technology

2.1.1 Overview

Figure 2.1: BubbleStorm overview

BubbleStorm is a peer-to-peer technology that provides a probabilistic
exhaustive search in a decentralised and unstructured way. It scales by ex-
ploiting heterogeneity on random graphs.
BubbleStorm is build on TCP/IP and forms an overlay network that is ran-
domly created. It can be used in LANs or over the Internet. The Bub-
bleStorm system consists of three base parts plus one part for the applications

15
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that are built on top. These parts are:

1. Topology

2. Measurement

3. BubbleCast

4. Applications building on BubbleCast

2.1.2 Locations

An important concept introduced by the topology part are locations, that are
used to keep the network connected. Locations are stored in a routing table
and at most two links are bound to it. Location IDs are randomly chosen, if
a new peer wants to join the network. Each location has two places for links.
One place is used for the master link and the other is used for the slave. So
every node is in the middle of two other nodes per location. If there haven’t
been any crashes, these connections form a circle. A master node does not
have any privileges. This concept is only used in order to serialise join and
leave processes so that race conditions are eliminated. See figure 2.2 for an
example of some peers connected to each other and the corresponding circle.

On the left hand in figure 2.2 is the circle that is equivalent to the con-

u2
u1

v1

v2

v3
w1

w2
x2

x1

w

u v

x

Figure 2.2: Locations in a circle

nections on the right. On the left side each index means the location of the
node. So node w is connected on location 1 with node u at location 2, where
node u2 is the slave. So w is the master of the edge w1 → u2. Also a self
loop can be observed at the edge w1 → w2, which is associated to the self
loop on the right.
The amount of locations should be chosen by a peer proportional to its band-
width and computation power. The absolute minimum count for locations
is two, although a minimum of three is recommended to increase robust-
ness against crashes. The locations count is calculated using the following



2.1. THE BUBBLESTORM P2P TECHNOLOGY 17

formula:

L =
Ld ∗Min(U,D)

S
,

where L is the amount of locations that should be chosen, Ld is the desired
minimum number of locations, U is the upload speed, D is the download speed
and S is the desired speed per location, so S

2
is the estimated bandwidth per

edge.

2.1.3 Topology

(a) Structure of the Topology

(b) Joining node. (c) Leaving node.

Figure 2.3: Topology of BubbleStorm

The topology is simple and uses only local information for self-organisation.
The overlay network is incrementally randomly created using a random walk
of length 3 ∗ (1 + log(n)), where n is the network size. The nodes are aligned
in a circle like in figure 2.3(a). Each node has at least four neighbours with a
tolerance of ±1. These neighbours should be connected to some other nodes
but self loops are not forbidden. E.g. see node w on the right side in fig-
ure 2.3(a). Every connection has a certain local and remote location1. In
order to participate in the BubbleStorm peer-to-peer network, a node has
to proceed the join protocol2. Therefore it needs to connect to a peer that

1for details of locations see (2.1.2)
2See the join protocol definition in section 2.2.3 on page 26
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already participates in the BubbleStorm network. Such peers can be found
using a local cache or a web cache. When a node found a peer and joins, it
is placed in between a random edge. This means that the new node gets two
new neighbours. Each of these two neighbours are connected to the same
location, that was randomly created by the joining peer. Nodes that want
to leave should proceed the leave protocol3. This node has to merge the two
edges of each location, like in figure 2.3(c). It is important, that only edges of
the same locations are merged, otherwise the circle could be separated into
two circles. Using this method the graph keeps connected, which is the only
reason of the circular structure.
The number of edges each peer has depends on its power. So this is the point,
where heterogeneity comes into play. A more powerful peer should have more
edges than a weak peer. If a peer is constantly congested, it may dynamically
reduce its locations, if it is idle most of the time, it tries to increase its de-
gree. The number of neighbour nodes must not vary in more than 2 * chosen
locations ± 1. If this happens as a result of a crash, then the number has
to be corrected. A SplitEdge message should be sent, if the node has less
neighbours, respectively a MergeEdge is sent if we have too many neighbours.

2.1.4 Measurement

Figure 2.4: Measurement analogy

The measurement has two tasks. First it is used to estimate the network
size, which is important for determining the length of random walks. Second
it estimates two additional values that are important for the BubbleCast
algorithm in order to choose the right bubble size. These values are D1 and
D2, where Di :=

∑
v∈V deg(v)i and V is the set of nodes that participate

in the network. A precision of approximately 5% of the measured values is

3See the leave protocol definition in section 2.2.4 on page 36
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sufficient for the needed calculations by BubbleCast and the random walk.
The measurement is based on the results of the work on epidemic algorithms
of Kempe, Dobra and Gehrke[10]. However, their algorithm was changed
by Terpstra, Leng and Buchmann[18] in a way that no designated leader is
needed anymore. A detailed description of the measurement protocol can be
found in the measurement protocol definition in section 2.2.5 on page 41.

2.1.5 BubbleCast

(a) Overlapping bubbles. (b) Probabilities of success.

Figure 2.5: BubbleCast bubbles and the probability of a success

BubbleCast is a new communication primitive that replicates informa-
tion, which could be data, meta-data or queries. It combines the advantages
of both random walks and flooding by controlling the complete amount of
replicas with exponential incremental parallelism for distributing it. The
emerging subgraph is called a bubble. The required information for building
this subgraph by BubbleCast is the weight w, which corresponds to the bub-
ble size, and the split factor s, which regulates the exponential distribution.
When a BubbleCast message has been received, its weight is decreased by
one and the message is locally processed by an application that builds on
BubbleCast. If w is still greater than zero then s pseudo random neighbours
are chosen. The weight w of the BubbleCast message is almost equally split
by s so that w =

∑s
i=1 wi with wi ≈ w

s
and wi is a whole number. The new

BubbleCast messages are then sent to the previously chosen s neighbours.
If a node receives the data and a corresponding query, it can act as a mediator.
The probability r that a mediator is found for any data/query association is
1− e−c2 = r. Let d be the data bubble size and q the query bubble size. We
set the failure probability e−c2 = e−dq/n ⇒ dq = c2n. Then the probability of
two bubbles overlapping is 1− e−dq/n, where n is the total number of nodes.
Note that only the product of q and d is important for the success probability.
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This makes it possible to do a trade-off of the query and data bubble sizes
in order to reduce overall network traffic.

Choosing the Bubble size

Figure 2.6: Overlapping bubbles

Let Rd be the estimated average injection rate for data bubbles and Rq

the average injection rate for query bubbles. The total system traffic for
BubbleCast messages, that is dRd + qRq subject to qd = c2n, should be
minimised. This leads to a balanced bubble size of q =

√
nRd/Rq and

d =
√

nRq/Rd
4. So each application should provide a balance factor that is

Rq/Rd. For now this should be a constant, but in the future this factor may be
changed dynamically depending on the measured injection rate. BubbleCast
samples proportional to node degree, so a powerful node that has twice the
degree gets twice as many query and data messages. So the node provides
a rendezvous point for four times as many query/data pairs. This means,
that the bubble sizes should not depend on the number of nodes in the
network, but on the number of edges. The following formula, derived in [18],
gives a threshold T, that is used to determine bubble sizes, and also takes
heterogeneity into account:

T =
D2

1

D2 − 2D1

.

4See [17] for a proof of this equation
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In the equation of the bubble size the node amount n should be replaced by
the threshold T , so that q =

√
TRd/Rq and d =

√
TRq/Rd.

Handling Collisions

Figure 2.7: Bubble distribution.

Collisions in BubbleCast only occur if a node receives two BubbleCast
messages for the same bubble5. Preventing collisions is important, if proba-
bilistic guarantees are required.
A requirement in order to detect collisions is that each bubble is assigned a
unique bubble ID or a hash on the message payload. If a node receives two
BubbleCast messages with the same bubble ID, respectively the same has
value for the payload, the node has to decide, if it is a collision or if it is
only a part of the next sub-bubble, which should be processed as usual. Sub-
bubbles correspond to a new pie slice in figure 2.7. No collision happens if
the end of the first sub-bubble is the start of the next sub-bubble. Therefore
the node must also store the end of each sub-bubble. When a real collision
is detected, the node has some possibilities to react. First it may report the
size to the originator of the BubbleCast and ceases further processing. The
originator can then incrementally add a pie slice by sending the BubbleCast
message to neighbours, that have not received this BubbleCast message yet.
Unfortunately this increases latency. The second method solves the collision
locally, where the collision happened. If BubbleCast uses only a small num-
ber as the split factor (s < degree− 1, one edge for the incoming message),
it has enough spare edges to forward the BubbleCast message to.

2.1.6 Applications building on BubbleCast

Applications can be developed independently building on BubbleCast. Cus-
tomised query algorithms on locally stored data can simply be implemented.

5See 2.1.8 for the probability of a collision to take place
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Possible applications could be file sharing, distributed wiki, distributed fo-
rum, Internet telephony, instant messaging, chat, video conferencing and
multi-player gaming. For details on the interface between applications and
BubbleStorm see section ??.

2.1.7 Properties of BubbleStorm

Powerful Search

BubbleStorm provides an exhaustive search, that gives probabilistic guaran-
tees, that a rendezvous point of a query and the corresponding data is found.
Since the evaluation of a query is done only on locally stored data, customised
search methods (e.g. XPath or full text) on application level may be used.
This is the most important advantage over DHTs, because the methods used
with DHTs are very restrictive.

Scalability and Heterogeneity

By exploiting heterogeneity BubbleStorm provides a massive scalable topol-
ogy, that considerably improves performance.

Optimality

To my knowledge no other system, that provides exhaustive search, has
asymptotically less traffic than BubbleStorm. See [17] for a proof sketch
on the optimality of BubbleStorm.

Robustness

For a peer-to-peer system node failures (crashes) are often encountered. Node
failures occur when peers leave the BubbleStorm network without executing
the leave protocol (see 2.2.4). This produces gaps in the created circle. These
gaps are not important in order to obtain the desired properties, so the circle
does not need to be repaired. In fact, the circle heals itself, if two broken edges
collide. This means the a location of a peer suddenly has both edges broken,
so this location can be dismissed. This makes the topology management a
lot easier. It is important that two half-broken locations must not be merged
because this may create two circles. The edges that are split by a node while
processing a SplitEdge message should be randomly chosen. If more broken
location a graph has could lead to the opinion that the nodes in the graph
could be split in two or more separate graphs. In fact the more locations
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break, the more looks the graph like the usual model of a random graph.
Such graphs are reputed to be almost always surely connected6.

Load Balancing

Unlike most peer-to-peer systems BubbleStorm does not introduce any hot-
spots. All peers are equal super peers which may have clients. There is no
keyword or hash specific destination for querys, like in DHTs. Since traffic is
equally spread over the links, congested peers can dynamically reduce traffic
by merging a location. On the other hand unchallenged nodes can increase
their links by joining.

2.1.8 Properties of BubbleCast

Collisions

The probability of x collisions at node v is less than
(

size
x

) (
dv

2|E|

)x

, where

size is the total bubble size, dv is the node degree of v and |E| is the amount
of all edges in the BubbleStorm network. See [18]. So the probability of two
collisions on one node is very low. For high degree nodes the probability is
higher, but especially these nodes should have more spare edges, due to ratio
of the split factor and the node degree, which then compensates.

Latency

Since the bubbles are created exponential with exponent split factor s the
longest path is approximately the logarithm to base s. Since s ≥ 2 the worst
case would be s = 2. Due to processing latency and queueing effects at the
nodes, values greater than three have a negative effect. In fact a value of
two seems optimally subject to decreasing latency. If we only consider the
longest path of a BubbleCast message, the maximum number of overlay hops,
is LA ≤ log2(|size|) ≤ log2(cT ) ≤ log2(2c|V |) [18], where |size| is the bubble
size, the threshold T is derived in 2.1.5 and |V | is the number of nodes in
the network.

6See Bollobás[2] for a proof of almost surely connected graphs
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2.2 The BubbleStorm Protocol

BubbleStorm has a protocol for building an overlay network topology. It is
built on TCP/IP and provides primitives for distributed searching and pub-
lishing content to the participants of the network. This mechanism is called
BubbleCast. Every participant is both client and server at the same time,
the so-called peers. BubbleStorm has the responsibility to route messages
to random neighbours, which are the nodes that are directly connected to a
peer. The topology forms a random multigraph7 that is internally arranged
as a connected circle. In this circle, each node can appear more than once.

2.2.1 Protocol Definition

Introduction

The BubbleStorm protocol defines how the participants in the peer-to-peer
network have to communicate with each other. It consists of a set of mes-
sages. The currently defined messages are described in table 2.1. The appli-
cation of these messages are explained in the appropriate sections.
A peer that wants to participate in the peer-to-peer network, has to connect
to a peer, that is currently in the network. The acquisition of another peer
is done via a host backed cache and a web cache. The exact location of the
web cache is not yet specified and may be a configuration parameter. The
first node creates self loops in order to create a circle.

2.2.2 Generic Message Properties

The following properties are valid for the message definitions below:

• All fields use big-endian byte order unless otherwise specified.

• All fields use signed 2-complement integer values unless otherwise
specified.

• All 32-bit IP addresses use IPv4 format, e.g. see table 2.2 on page 26.

• All single-precision floating point numbers have 32 bit. They have the
common structure, that has been defined in ANSI/IEEE Std 754-1985.

7In contrast to a digraph a multigraph can have more than one edge between two nodes
and also self loops are allowed.
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Message
type

Description of the provided messages

SplitEdge The SplitEdge operation is used to join BubbleStorm and
to increase the amount of neighbours.

MasterHello A peer informs the receiver of this message, that the
sender is the new master of an edge.

SlaveHello A peer sends a SlaveHello to a joining node, telling it that
the sender is the slave of an edge.

Redirect Redirect is used by a Master in order to let his slave know,
that he has to redirect its message flow to another node.

Cancel This message is used if a node fails to connect after re-
ceiving a Redirect form its master in order to tell the
master to abort the joining process of the joining node.

MergeEdge The MergeEdge message is used for an orderly leave of
the network.

BreakEdge A BreakEdge is used if a node wants to leave the network,
but its master isn’t available any more, then the edge
between the leaving peer and the slave of this location
has to be broken.

Ping A Ping message has two purposes. First it is used as a
sign that the connection is still alive. Second it is used
to carry measurement data. Therefore Pings have to be
sent in an equal interval by all peers. It is not required
and also not desirable that the peers are synchronised,
since this would lead to traffic bursts.

BubbleCast BubbleCast is the primary communication primitive for
application that are built on BubbleStorm.

ClientHello When a new client connects it send a ClientHello to the
host it connected to.

ClientOk If a client has connected and has already send a Clien-
tHello, the host should answer with a ClientOk if it ac-
cepts.

ClientDeny If a client has connected and has already send a Clien-
tHello, the host has to answer with a ClientDeny if it
cannot accept any more clients.

UserConnect This message is sent when a user connection should be
established.

UserAccept This message is the answer if the user connect request is
accepted.

Table 2.1: Message types
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Byte value 0x0A 0xAB 0x0E 0x8C
Byte offset 0 1 2 3

Table 2.2: Representation of the IPv4 address ”10.171.14.140”

2.2.3 The Join Protocol

As said earlier, the peers in the BubbleStorm network are aligned in a circle.
A new node has to proceed the join protocol in order to extend the circle8.
Whether a node wants to join the network or wants to get new neighbour
nodes, this node and all involved nodes will also have to proceed the join
protocol. The join protocol can be split up into two parts. A random walk
for choosing an edge and the joining process itself.

images/node wants to join.jpg

(a) Random walk. (b) Joining node.

Figure 2.8: Joining the BubbleStorm network.

If a node isn’t yet connected to network it will have to use some kind
of host cache to initially connect to a host that already participates in the
BubbleStorm network. The SplitEdge message must include the field location
that has to be unique to the host that starts the SplitEdge message. This
field is recommended to be randomly chosen, although this is not required.
Then the SplitEdge message is sent over a random walk of length 8 + 3 *
ln(network size) through the network. The SplitEdge message reaches the
end of the random walk if the remaining hops are ≤ 5. If the node can not
process the split request and the remaining hops are above zero, it handles
the message like a SplitEdge messages that has a remaining hop count ¿ 5.
Otherwise the message is dropped. If a node can process a SplitEdge and
the hop counter is between zero and five it will choose a random available
location to split. This node will become the master of the joining node. The
master node and the joining node perform a TCP Handshake, that is initi-
ated by the master. After the connection is established, the master sends a
MasterHello to the joining node.

8See section 2.1.2 for details on the circular structure of BubbleStorm networks
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Now we have two possibilities. Either we the master has already a slave on
the location that should be split or not. In the first case (figure 2.9(a)),

images/new node connected.jpg

(a) Split edge with neighbour.

images/new node connected2.jpg

(b) Redirect and MasterHello.
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(c) SlaveHello sent.

images/join finished.jpg

(d) Communication ceased.

Figure 2.9: Handling a SplitEdge 2nd phase with slave.

the field expect slave, that is contained in the MasterHello message, is set
to true. Then in figure 2.9(b) the master sends a Redirect message to its
slave with the information about the joining node, which it received with
the SplitEdge message and the MasterHello message to the joining node. On
receiving the MasterHello message, the joining node sets his new master for
its location and waits for the SlaveHello from its future slave. If the future
slave succeeds in connecting to the joining node, it shuts down the link to its
current master and sends a SlaveHello to its new master (see figure 2.9(d)).
If the future slave cannot connect to the new slave, it sends a Cancel to its

images/split-w.jpg

(a) Connect to new node fails.

images/redirect.jpg

(b) Restore original state.

Figure 2.10: Cancelling a join process.

current master, which in turn closes the link to the joining node and keeps
the old slave current. In the second case, see figure 2.11(a), the master sets
the field expect slave to false. In this case, only one message is sent. That is
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images/split-w-o.jpg

(a) Split edge without neigh-
bour.
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(b) MasterHello sent to new
node(II).
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(c) Join finished 2nd case.

Figure 2.11: Handling a SplitEdge 2nd phase without slave.

the MasterHello message, which is sent to the joining node. The join process
is finished, when this message has been processed (see figures 2.11(b) and
2.11(c)).
In all MasterHello and SlaveHello messages the approximated values of the
current measurement are included. Since a new node does not have any infor-
mation about the network, these values are used to bootstrap the measured
values. SplitEdge messages that are started without knowing the network
size, which is important to choose the correct length of the random walk,
have to be initialised with the value 231 − 1, which corresponds to a maxi-
mum signed 32 bit integer. The first node, that receives a SplitEdge with a
number of remaining hops, that is beyond the expected value, should correct
the value according to the formula mentioned above.
The needed messages for joining are:

1. SplitEdge

2. MasterHello

3. Redirect

4. SlaveHello

5. Cancel
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(a) Connect to node.
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(b) Send SplitEdge message.
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(c) Receive MasterHello.
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(d) Receive SlaveHello.

Figure 2.12: Joining BubbleStorm.

Algorithm of the corresponding nodes

Joining node At first the joining node connects to a node, that already
participates in the BubbleStorm network. The remaining hop count for the
SplitEdge message should be initialised with d8+3∗ln(network size)e, where
ln is the natural logarithm to base e. If the network size isn’t known yet, the
hop count should be initialised with 0x7FFF FFFF hops. For each SplitEdge
a unique random location has to be generated. The value of the location has
to be included in the SplitEdge message.
Then it sends the SplitEdge messages to the node to which it is connected, see
figure 2.12(b). After that the node can stay connected as a client node while
waiting for incoming connections. This means that this node can immediately
begin searching the BubbleStorm network.
On receiving the MasterHello message in figure 2.12(c) the node sets the
sender of the MasterHello as his master for the location, that was given in the
MasterHello message. The location of the receiver has to exists, otherwise the
master should be dropped. On receiving the SlaveHello message the sender is
set as the slave for this edge, like In figure 2.12(d). If the SplitEdge message
is already timed out the additional neighbours should be accepted but after
the join is complete the location should be merged. If the location has not
been yet been created then the sender of the message should be dropped.
After that the node is fully integrated into the network.
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images/master-recsplit.jpg

(a) Receiving the SplitEdge.
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(b) Establish connection.
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(c) Sending MasterHello and
Redirect messages.
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Figure 2.13: Master view of join.

Master Every node that gets a SplitEdge message is a potential master
for the joining node. The first host that receives the SplitEdge message (See
figure 2.13(a)) and reads an unexpected high hop count should correct it to
a reasonable value. For example, if the network size is 1.000.000 nodes the
hop count should be less than d(8 + 3 ∗ ln(1000000))e = d(8 + 3 ∗ 13.82)e =
50. So the node that knows the network size and gets a SplitEdge message
with a too high value as the hop count should sets the hop count to 50 and
then process the message. See section 2.1.4 for details of the calculation of
the network size. In any case the hop counter is reduced by one. There are
four possible ways to handle a SplitEdge depending on the remaining hop
counter and the current state of the receiving node.

1. If the hop count of a SplitEdge message is greater than five it forwarded
to a random neighbour node, like in figure 2.13(b).

2. If the node is able to split an edge, it connects to the originator of the
SplitEdge message. An edge can be split, if it isn’t already splitting.

3. If the node is not able to process a split and the hop counter is still
greater than zero it routes the message to a random neighbour node.

4. If the hop counter reaches zero and the node can’t process a SplitEdge,
it should silently discard the message. The loss will be discovered by a
time out of the joining node.
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The Master processes the SplitEdge by creating a connection with the joining
host. Therefore it sends a TCP SYN and the other host replies with a TCP
SYN ACK. After the connection is established the master sends a Master-
Hello to the joining node with the corresponding locations set. This message
tells the new node that it is the slave for the connection and the sender is the
master. Simultaneously the master sends a Redirect message to the current
slave of the edge that is currently splitting, see figure 2.13(c). The Redirect
message contains the needed information about the joining node.
If the connection between the master and the current slave is shutdown with
a TCP FIN signal, it should send a FIN back and close the connection, like
in figure 2.13(d). After that the master sets the future slave as the current
slave.
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(a) Receiving the Redirect.
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(b) TCP Handshake.
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(c) Sending SlaveHello.
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(d) Ceasing connection.

Figure 2.14: Slave view of join.

Slave First, in figure 2.14(a), the slave receives a Redirect message from its
master. This message instructs it to change the current edge to its master
to a new edge between it and the node given in the Redirect message. The
new node is the future master of the edge that is going to be created.
Afterwards in figure 2.14(b), the slave tries to do a TCP handshake. If it
succeeds, the slave sends a SlaveHello (figure 2.14(c)) to the future master
and sets it as its master. Then, in figure 2.14(d) the slave sends a FIN to
the old master. After this the connection to the old master should be closed
and the current master replaced by the node that just joined.
If the connection isn’t possible because of firewalls or NATs the slave should
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(a) Send Cancel to master.
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(b) Restore connections.

Figure 2.15: Slave cancels join.

send a Cancel message to the master, like in figure 2.15(a). The master should
then close the connection to the joining node and keep the old slave for its
location.

Clients that want to join

Connecting as client is useful for hosts that don’t have full accessibility (fire-
wall, NAT) and it is recommended for very low capacity nodes. Also nodes
that want to join can stay as a client until they are promoted to a full par-
ticipating node. So they can already send BubbleCast messages and don’t
need to experience any delay.
When a client is connected it has to send a SplitEdge, in order to partici-
pate in the network as full node, or a ClientHello in order to apply for an
client connection. The client may receive a ClientOk if the peer node lets
the new node stay as a client. Otherwise the client will receive a ClientDeny.
SplitEdge messages from a client should be handled like a SplitEdge bundled
with a ClientHello if the client hasn’t been accepted yet. After the client re-
ceived a ClientOk it may send SplitEdge messages, BubbleCast messages for
doing a query or to post available content or meta-content. Clients usually
don’t send Ping messages. The only exception is when a full peer wants to
leave the BubbleStorm network. Then he has end all communication with
its neighbour peers and stay connected as a client or it reconnects as a client
in order to send a Ping message, that contains all measurement data, which
would be lost if the node simply left.
Clients may also initiate user connections which are handled in the last part
about applications that are built on top of the BubbleStorm core. Other
messages are currently not allowed for client nodes.
Note: A node that connects to a host should be handled like a client until it
is promoted. This means that a client, which is the new master, can send a
MasterHello message and a client that is the new slave can send a SlaveHello
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message. Other messages except the messages mentioned above won’t be
sent from any host that is connected as a client.

SplitEdge

Fields Message
type

Origin IP
address

Origin
TCP port

Location
of origin

Hops

Byte offset 0..3 4..7 8..9 10..13 14..17

Table 2.3: Fields of the SplitEdge message

Purpose This message is used by nodes that want to get new neighbours.
This happens when a node joins the network and when neighbours
crash. One SplitEdge sent should result in two new neighbours for the
given location. It is possible due to node crashes that only one neigh-
bour is returned or the message gets lost on the random walk through
the BubbleStorm network. Therefore a node should set a timeout for
SplitEdge messages and send additional messages if the timeout expires.
Locations should not be reused, since this could lead to conflicts, when
the a large delay is experienced.

Message type Fixed value := 0x5E000080(hex) = 1577058432 (dec)

Origin IP address The IP address of the new node that wants to join the
BubbleStorm network.

Origin TCP port The TCP port on which the new host is listening for
incoming connections.

Location of origin The location of the joining host that should be filled.

Hops This field contains the remaining hops of the random walk.

MasterHello

Fields Message
type

Sender
location

Receiver
location

Expect
slave

Listen
port

Measurement
bootstrap

Byte offset 0..3 4..7 8..11 12 13..14 15..26

Table 2.4: Fields of the MasterHello message
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Purpose A MasterHello message is used by a sender A , that wants to tell
a receiver B that A is the master of the edge between A and B for
the given locations. B should set A as the master for this edge and A
should set B as the slave of the connection according to the locations
passed in the MasterHello message.

Message type Fixed value := 0x5E000001(hex) = 1577058305(dec)

Sender location The location of the sender of this message.

Receiver location The location of the receiver of this message.

Expect slave A value of 0 sets this field to false, any other value sets this
field to true. This should tell the receiver if a slave is going to connect
to it.

Listen port The TCP port on which the master is listening for incoming
connections. This is important since an incoming connection does not
tell what port it is listening on.

Measurement bootstrap This field contains three Single-precision float-
ing point numbers, that are used to bootstrap the values of the network
size and the parameters for BubbleCast at the new node. If a new node
joins, it has to use the latest stable values that were measured by a node
that has already participated in the network.

Redirect

Fields Message
type

Remote IP
address

Remote
TCP port

Remote lo-
cation

Byte offset 0..3 4..7 8..9 10..13

Table 2.5: Fields of the Redirect message

Purpose This message is used by the master of a connection, in order to
instruct the slave to redirect the edge between the master and slave to
the joining node. On receiving this message the slave should send a
SlaveHello to the joining node.

Message type value := 0x5E000002(hex) = 1577058306(dec)

Remote IP address The IP address of the joining host to which this edge
should be redirected.
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Remote TCP port The TCP port on which the joining node listens.

Remote location The location that the joining node wants to allocate.

SlaveHello

Fields Message
type

Sender
location

Receiver
location

Listen
port

Measurement
bootstrap

Byte offset 0..3 4..7 8..11 13..14 15..26

Table 2.6: Fields of the SlaveHello message

Purpose A SlaveHello message is the similar to the MasterHello message.
The SlaveHello message is used by a sender C that sends it to the
receiver D. So D can set C as the new slave for the local location and
itself as the master for the edge between C and D according to the
locations passed in the SlaveHello message.

Message type value := 0x5E000041(hex) = 1577058369(dec)

Sender location The location of the sender of this message.

Receiver location The location of the receiver of this message.

Listen port The TCP port on which the slave is listening for incoming
connections. This is important since an incoming connection does not
tell what port it is listening on.

Measurement bootstrap This field contains three Single-precision float-
ing point numbers, that are used to bootstrap the values of the network
size and the parameters for BubbleCast at the new node. If a new node
joins, it has to use the latest stable values that were measured by a node
that has already participated in the network.

Cancel

Fields Message type
Byte offset 0..3

Table 2.7: Fields of the Cancel message
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Purpose If a slave gets a Redirect message and tries to connect to the node
whose data was given in the message and fails, it replies its master with
a Cancel message, that in turn restores the state before the join process
began.

Message type value := 0x5E000043(hex) = 1577058371(dec)

2.2.4 The Leave Protocol
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(a) Before leave.

images/leavecomplete.jpg

(b) Merge complete.

Figure 2.16: Leaving BubbleStorm.

Hosts, that want to leave the BubbleStorm network, should not just quit.
Instead they should behave according to the leave protocol in order to pre-
serve the circular structure of the network. We said earlier that each location
has a master and a slave, where the node itself is placed in between these
two nodes. This is the situation in figure 2.16(a). If this node wants to
leave, then it should merge the edge between it and its master and the edge
between it and its slave. So the master communicates with the slave and the
leaving node isn’t involved anymore. See figure 2.16(b) for the state after the
merge operation. Edges of different location must not be merged, otherwise
the ring could be transformed into two separated rings. This is especially
true for broken edges.
The needed messages for leaving are:

1. MergeEdge

2. MasterHello

3. BreakEdge

Algorithm for the corresponding nodes

Leaving node In figure 2.17(a) we have the situation before the leave pro-
cess. The nodes represented in the circular structure. At first the leaving
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(a) State before leave.
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(d) Merge complete.
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(f) Send BreakEdge.

Figure 2.17: Leaving the BubbleStorm network (leaving node).

node sends for each location a MergeEdge to the master node of that location
in order to request the master to let the node leave the network, like in figure
2.17(b).
The leaving node then waits for a TCP FIN signal from the master and the
slave. Each FIN is replied by a FIN sent back so that the nodes are now
disconnected. The final result of this procedure is shown in figure 2.17(d).
If the location has no slave to merge with, the MergeEdge message should
contain the IP address 0.0.0.0 with TCP port 0 and location 0, figure 2.17(e)
shows the situation when such a MergeEdge message has to be sent. If a loca-
tion has no master to send a MergeEdge message to, it will send a BreakEdge
message to the slave, see figure 2.17(f).

A node that wants to leave the network should send its remaining mea-
surement information to a node that still participates in the network, see
figures 2.18.
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(a) Connecting to an arbitrary
node.
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(b) Sending a Ping.

Figure 2.18: Saving measurement information.

Note 1 : If a node wants to leave a single location, it should preferably choose
a location that has a broken edge. This should be done in order to let holes
in the circle run into each other until they eliminate themselves.
Note 2 : Before the clients are closed, a clients should be redirected or at
least informed about the intention to leave.
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(a) Receiving the MergeEdge.
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(d) After MergeEdge with IP
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Figure 2.19: Leaving the BubbleStorm network (master).

Master node The master accepts the received MergeEdge message (fig-
ure 2.19(a)) by sending a FIN to the leaving node (2.19(b)) that in turn
responds with a FIN and closes the connection. Simultaneously, the master
establishes a connection with the new slave, whose information is given in
the MergeEdge message. They perform a TCP handshake. After this the
master sends a MasterHello to the new slave with the expect slave field set
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to false, see figure 2.19(c). Now the master node has successfully replaced
its slave node.
If the master received a MergeEdge without any information about the re-
placement slave (all fields set to 0) then it just disconnects from the slave by
sending a TCP FIN and awaiting the FIN replied. See figure 2.19(d) for this
situation.
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(a) Receiving a MasterHello
while already having a master.
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(b) Sending FIN to old mas-
ter.

Figure 2.20: Leaving the BubbleStorm network (slave).

Slave node When a node receives a MasterHello message for a location,
where the master is already present, see figure 2.20(a), it should cease the
communication with the old slave and replace it with the node that has just
sent the MasterHello message.
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(a) Race condition one.
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(b) Race condition two.

Figure 2.21: Race conditions when leaving.

Avoiding race conditions when a node leaves There exist two basic
cases where race conditions could occur.
Figure 2.21(a) shows the situation for the first case, where two nodes, nodeL

and nodeS, want to leave simultaneously. NodeL sends a MergeEdge for a
certain location i to its master nodeM and afterwards it receives a MergeEdge
message for the same local location i from its slave nodeS. In this case nodeL

should simply ignore the MergeEdge message from nodeS. When nodeS re-
ceives a MasterHello message for the location it wanted to leave it sends a
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MergeEdge message to the new master nodeM .
Figure 2.21(b) shows the situation for the second case, where a node nodeL

wants to leave while its master nodeM is splitting the location where they are
connected. A node nodeL that sends a MergeEdge message for a certain loca-
tion receives a Redirect message from its master nodeM . Then nodeM should
ignore the MergeEdge message and its slave nodeL should send a SlaveHello
message to its new master nodeNM followed by a MergeEdge message for
this location. If the leaving node cannot connect to nodeNM it should send
a Cancel message followed by the MergeEdge back to nodeM .

MergeEdge

Fields Message
type

Remote
IP address

Remote
TCP port

Remote
location

Byte offset 0..3 4..7 8..9 10..13

Table 2.8: Fields of the MergeEdge message

Message type value := 0x5E000042(hex) = 1577058370 (dec)

Remote IP address The IP address of the host that should be the new
slave after the merge completes. Set this field to 0 if no slave is present.

Remote TCP port The TCP port the new slave listens on. This field uses
an unsigned short. Set this field to 0 if no slave is present.

Remote location The remote location of the new slave that should be re-
placed. Set this field to 0 if no slave is present.

Purpose This message is used by a node that wants to leave the location
on which the message is sent. This message contains the address and
location of the replacement for the sending node. All fields must be set
to 0, if and only if the location of the leaving node has no slave.

BreakEdge

Fields Message type
Byte offset 0..3

Table 2.9: Fields of the BreakEdge message
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Message type value := 0x5E000003(hex) = 1577058307(dec)

Purpose The BreakEdge message is used if a node has no master for the
location it wants to leave. As a master itself for the slave of the location
it can break the edge by sending a BreakEdge to its slave.

MasterHello

The description of this message can be found in the join protocol part on
page 33.
Note: the field expect slave should be set to false, because no slave should
connect when merging.

2.2.5 The Ping and Measurement Protocol

The Ping message is used for two purposes. First it is used as a keep alive sig-
nal for connected neighbours and second it is used to carry the measurement
data used by the measurement protocol.

Pinging nodes

The Ping messages should be send in equal intervals of five seconds. A host is
assumed dead if it hasn’t sent several typicallymore than three ping messages
in a row. If this happens the connection to the host should be removed from
the route table and if the number of neighbours falls below the minimum
acceptable amount of neighbours a new SplitEdge message has to be sent to
a random remaining neighbour.

Theory of the measurement protocol

The measurement part is based on the work of Kempe et al. [10] and has
been modified to eliminate the need for a single probe distributor.
The measurement uses a paradigm of fishermen that throw water and a school
of fish into a lake, see figures 2.22(a) and 2.22(b). After a while when the
fish is uniformly spread, they examine the water and amount of the school
of fish under the fishing boat. All kinds of fish in the lake are predators that
eat smaller fish but never larger ones. They are no cannibals and dislike
each other. So they distribute themselves uniformly over the lake, see figure
2.22(c) for an example for such a distribution. Then the water under a boat
divided by the fraction of the only fish swarm that is still left, these will be
the largest fish, will be a good estimation of the size of the lake.
The size of the fish should be a randomly chosen 64 bit signed long value,
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Figure 2.22: Measurement paradigm.

that is newly generated every round. Fish size collisions will hardly occurr
because the highest value (biggest kind of fish) has to be randomly chosen
by two independent nodes in the same round.
In our case the lake is the interested value D0, D1 or D2. So we need to
examine three lakes simultaneously. Fortunately we can reuse the fish. Each
fisherman has to put an equal number of fish into the lake. Let this be one
fish swarm f = 100% = 1.0. The initial values of D0, D1 and D2 have to
be set according to the following rule. Since we are interested in

∑
n, where∑

n is the amount of nodes in the network, an inital value of D0 of 1.09

is set. For the value of D1 (respectively D2) the initial values should be d
(respectively d2) where d is the current degree of the node.
In order to calculate the interested values, D0, D1 and D2 have to be divide
by f . So Wi

f
≈

∑
di = Di, for iε{0, 1, 2}, where di are the actual measured

values.
For example, if the fish is nearly equally distributed10 and a node gets
W0 (network size) = 2 and f (fraction of fish) = 0.2, the network size
D0 = 2

0.2
= 10. This means that the network has 10 nodes.
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Figure 2.23: Measurement distribution.

Distribution algorithm

The distribution works as follows:

1. Every five seconds the measurement values are distributed.

2. The values f, D0, D1 and D2 are divided into d + 1 parts.

3. Every edge of the node receives a part and one part stays at the node.

Calculating the amount of fish

The fact that big fish eat smaller fish has to modelled somehow. So let fa

be the amount of fish of size a and let r be the received fish size respectively
s the stored fish size. Then the following cases may occur when receiving a
Ping message.

1. The fish size in the Ping message is greater than the current fish size of
the stored fish. Then the current fish is completely eaten by the larger
ones.

9We put one node in the network.
10This means if ft − ft−1 ≈ 0
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2. The fish size in the Ping message is equal to the fish size of the currently
stored fish. Then the fish in the Ping message will be simply added to
the fish that is stored.

3. The fish size in the Ping message is less than the fish size of the fish
stored at the receiving node. In this case the fish of the Ping message
is completely eaten and the old amount of fish will stay the current
amount.

f̂s =


fr r > s

fs + fr r = s

fs r < s

New nodes that enter the network in the middle of a round

The nodes that join should not put any additional values into the Ping mes-
sage, instead they should just distribute the values that they receive using
the algorithm described above.

Round switch

If the measured values have stabilized a new round is started. Therefore the
first node that found a stable value overwrites the old network information
with the newly found, then increments the round by one and reinitialises
its values, that will be measured. If a node receives a Ping message with
a higher round contained than the current one, it should save its current
results, adapt the round and reinitialise the measured values. In order to
deal with the limitation of 32 bit values, the round that should be chosen
has to be adapted. A value of 0 is not allowed, since it is used by nodes
that do not have any information about the network. This only used for the
first few ping messages, which the receiving nodes must simply ignore with
respect to the measurement. Let K be the actual round and G the seen
round from an incoming Ping message. Then the following equations have
to be used to calculate the current round K̂:

Ĝ =

{
G + 232 G < K

G otherwise
K̂ =

{
G Ĝ−K ≤ 216 ∧G 6= 0

K otherwise

The needed messages for the measurement part are:

1. Ping
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Ping

Fields Message
type

Round Fish
size

Measurement Fish
count

Byte offset 0..3 4..7 8..15 16..27 28..31

Table 2.10: Fields of the Ping message

Purpose This message is used as a keep alive signal and piggybacks mea-
surement data.

Message type Fixed value := 0x5E000081(hex) = 1577058433 (dec)

Round This is the current round for measurement

Fish size A randomly created fish size. Big fishes eat smaller ones. This
field uses a signed long(8 bytes).

Measurement The measurement values. This field consists of three single-
precision floating point numbers.

Fish count The fraction of (all biggest seen) fish that we want to distribute
to this receiver. This field is a single-precision floating point number.

2.2.6 The BubbleCast Protocol
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(a) Overlapping bubbles.
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(b) Bubble pies.

Figure 2.24: BubbleCast description.

BubbleCast is used as the primary distribution method for application
specific information. This distribution method gives probabilistic guarantees
for a rendezvous of a query message and a matching data message. The
actual match has to be done on the application level, so the matching can
be adapted to the application needs.
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Some of the values included in a BubbleCast message are the size, start,
and end. The size describes the size of the sub-bubble that is created at
each node that receives the BubbleCast message. Bubbles may be searched
incrementally. Each incremental search is a pie slice, similar to figure 2.7.
Each slice has a range of [start..end). The start is the starting position of the
slice, while the end is the ending position of the slice in the current bubble.
When a host receives a BubbleCast message it processes the message locally.
If the bubble size is still greater than zero, the remaining size is divided
by the split factor and forwarded to an equal number of randomly chosen
neighbours. The split factor is application dependent. A value of two or
three is recommended in order to avoid queueing effects. A split factor of
two would mean that each host that received a BubbleCast message would
forward the message to two neighbours. The peers, to which the BubbleCast
messages are sent, are pseudo randomly chosen with the origin of the message
as the seed. This makes it possible to do incremental search and may be used
as a countermeasure for collisions. A message is never sent back to the host
from which it was received, since this would induce a sure collision.
When starting a BubbleCast two additional values are needed, which are a
certainty factor c and A balanced factor b. These values are used to specify
the initial size of a BubbleCast message. The certainty factor c controls the
probabilistic guarantee r for a rendezvous of two messages. The probability
r of a match is:

r = 1− e−c2

The bubble size

The size s of the bubbles are calculated by the following formula using the
values D1 and D2 gained from the measurement protocol11:

si = c
√

Tbi, where T =
D2

1

D2 − 2D1

Let the overlap probability e−c2 be equal to e−sasb/n. This means that the
certainty factor c = sasb/n has to satisfy this condition, where n is the
network size. Therefore sa and sb should be chosen sophisticated, so that
the overall traffic can be minimised. In order to choose the optimal size the
balanced factor has to be approximated. The good balanced factor is chosen
using the rate of bytes per second that are transmitted on average by type
a and type b messages. Let rate Ra be the rate of messages of type a and
Rb the rate of type b messages. A minimal network traffic can be achieved

11See section 2.2.5 on page 41
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by minimising saRa + sbRb subject to sasb = c2n. The balanced factor for
message type a equals actually the ratio Rb

Ra
. A detailed analysis of the bubble

size can be found in [17, 18].
The needed messages for BubbleCast are:

1. BubbleCast

2. Match

Algorithm for the involved nodes

Starting a BubbleCast If a peer wants to start a BubbleCast, it has to
calculate the size according to the rule above. If it does not want to do
an incremental search, then it should choose zero for the start and the end
should equal the size. Each application has to define its global unique pay-
load type. An application may use some payload types, e.g. one type for
a query message and one type for data respectively meta-data messages. It
has to set its TCP/IP address, which isn’t changed anymore once it is set.
After all parameters have been set and the payload is attached, the Bubble-
Cast message should be handled as described in the next paragraph.

Handling a BubbleCast The algorithm in figure 2.25 shows the handling
of a BubbleCast message. It will be described here step by step. Whenever
a node receives a BubbleCast with start = 0 it has to match the message
content locally by the application that is responsible for the received bubble
type, otherwise the BubbleCast message is only routed according to the fol-
lowing algorithm. Matching is handled later in this chapter.
The variable local counts the size of the BubbleCast messages that are locally
handled. There are some steps that have to be done before the BubbleCast
message can be forwarded.At first all neighbours have to be permuted, then
the sender of the BubbleCast message is removed since we do not want to
send the message back. A message sent back would cause a sure collision
which should be avoided. The application specific split factor ‘split‘ defines
to how many neighbours the BubbleCast message is forwarded. This is shown
in line 7 of the algorithm. A split factor value of one would BubbleCast dis-
tribute the messages over a single random walk. After the hosts have been
chosen, self loops and duplicate edges are removed from the array of hosts.
The removed neighbours are redundant and so they are handled at the send-
ing peer in order to minimise network traffic.
Finally the size is reduced by all locally handled BubbleCast messages. The
same is done for the start and for the end in line 13 to 15. At last the remain-
ing size is split up among the remaining neighbours to which the message
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has to be forwarded. See line 20 to 30 for the splitting of the size, the recal-
culations for the start and end of each message, and the forwarding of the
BubbleCast messages. The recalculation is described in the next part about
the provided incremental search.

Incremental BubbleCast Searches A very useful property of Bubble-
Cast is that it can be used for incremental search. So for a probability of
success of 99.99% a certainty factor of 3 has to be used. Since a certainty
factor of 0.7 results in a success probability of more than 50%, a match
may be found very early in the searching phase. This is especially true for
popular data with several redundant bubbles. So message overhead may be
reduced by incrementally search the peer-to-peer network. This method uses
the fields start and end, which have not yet been described thoroughly. Each
part of the incremental search can be seen as a slice of the whole bubble. Fig-
ure 2.24(b) shows a bubble that is incrementally searched. If enough results
have already been received then any remaining slices should be dismissed.
The start holds the value of the start of the slice while the end holds the
exclusive end of the bubble slice. Before the starts and ends of the slices
can be determined, the sub-bubble sizes have to be calculated. The overall
size is split by the number of hosts to which the message is actually sent.
Let mod be the remainder of the division and div := bsize/splitc. Therefore
each message has a size of div and the additional size is distributed among
the first mod neighbours, which can be observed in line 22 of the code. The
position in the current bubble is set to zero in the beginning. The start of a
slice is the the maximum of the start of the current bubble reduced by the
position in the current bubble and the locally handled edges, and zero. So
the start for slice i starti = max(start − local − position, 0). The end of a
slice is the minimum of the size of that slice and the overall end reduced by
the current position of the slice and the locally handled edges. This means
that for slice i endi = min(sizei, end− local − position).
Let us make an example of a slice in the middle of a bubble. Let the bubble
size be 9, the start is 3, and the end is 6, while the split factor is 2. Let’s
assume that no duplicate edges and self loops were chosen for forwarding.
The first message that is handled has the values (9, 3, 6) as (size, start, end).
This message is not matched locally since the start does not equal zero. The
new size is calculated as 9−1

2
= 4, the start equals max(0, 3 − 1 − 0) = 2,

and the end equals min(4, 6 − 1 − 0) = 4. The message sent has the values
(4, 2, 4), which means that we asked only peer two and peer three to handle
this part of the BubbleCast sub-bubble of size four.
Since we have another neighbour left, we add sizei = 4 to the position. The
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1 bubblecast ( int s i z e , int s ta r t , int end , byte∗ msg) {
2 i f ( s t a r t == 0) proce s s (msg ) ;
3 int l o c a l = 1 ;
4 // f i nd ne ighbours
5 out = permutate ne ighbours ( o r i g i n o f (msg ) ) ;
6 out = remove sender ( out , msg ) ;
7 out = subarray ( out , 0 , s p l i t ) ;
8 out = r emov e s e l f l o op s ( out ) ;
9 out = remove dup l i ca t e edge s ( out ) ;

10 // remove l o c a l edges from remaining s i z e
11 int out l en = out . l ength ;
12 l o c a l += s p l i t − out l en ;
13 s t a r t = min ( s t a r t − l o c a l , 0 ) ;
14 s i z e −= l o c a l ;
15 end −= l o c a l ;
16 i f ( s i z e < 0) return ;
17 // s p l i t the s i z e among the chosen ne ighbours
18 int pos = 0 ;
19 int div = s i z e / out l en ;
20 int mod = s i z e % out l en ;
21 for ( int i =0; i<out l en ; i++){
22 int s i z e i = div + ( ( i < mod) ? 1 : 0 ) ;
23 int s t a r t i = max( s t a r t − pos , 0 ) ;
24 int end i = max(min ( s i z e i , end − pos ) , 0 ) ;
25 i f ( s t a r t i < end i ) {
26 out [ i ] . bubblecast ( s i z e i , s t a r t i , end i , msg ) ;
27 }
28 pos += s i z e i ;
29 }
30 a s s e r t ( pos == s i z e ) ;
31 }

Figure 2.25: BubbleCast algorithm
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start is calculated as max(0, 3 − 1 − 4) = 0, and the end of the second slice
equals min(4, 6− 1− 4) = 1. The message sent to the second neighbour has
the values (4, 0, 1). So actually only one peer in the sub-bubble of size four is
asked to handle the message. The receiving nodes follow the same procedure.

Matching Currently there a two alternatives of reporting matches to the
originator of a BubbleCast. The first is to create a new connection to the
originator and send him a match message. The second would be to send the
message back on the same way the BubbleCast has been forwarded. Both
methods have advantages and disadvantages, that have to be examined. At
the time this is written only the first method is supported. So let us take a
look into those two procedures.

1. Directly connecting to the originator The advantage of directly
connecting to the originator is that the delay decreases because positive
results are immediately reported back. No routing information have to
be kept since the address of the originator is transmitted along with
the BubbleCast message.
The main disadvantage is that the originator may be SYN flooded with
connection requests of many redundant results. If the network is large
and a popular item is searched, the node may experience an incoming
connection flood of over a thousand requests.

2. Routing Match messages back to the originator This method is
very good to filter redundant results. It does not stress the network by
establishing many short living connections.
The disadvantage is that this method has a higher delay. Also if a
node near the sender crashes while the BubbleCast is in progress, a
large portion of a sub-bubble may be lost.
A possible solution may be that the peers that were connected to the
crashed peer, connect directly to the originator and send the filtered
results to it. After a timeout they may terminate the connection.

BubbleCast

Purpose This message is used as the primary communication primitive. All
applications building on BubbleStorm have to use this message type
when distributing information.

Message type Fixed value := 0x5E000082(hex) = 1577058434 (dec)

Payload length The length of the payload
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Fields Message
type

Payload
length

Origin IP
address

Origin
TCP port

Bubble
size

Byte
offset

0..3 4..7 8..11 12..13 14..17

Fields
cont’d

Total Size bubble
start

bubble
end

bubble
type

payload

Byte
offset

18..21 22..25 26..29 30..33 33..(33+length)

Table 2.11: Fields of the BubbleCast message

Origin IP address The IP address of the peer that initiated this Bubble-
Cast message.

Origin TCP port The port on which this host is listening for incoming
connections.

Bubble size The size of the (sub-)bubble.

Total size The complete size of the bubble. This field is constant within
each bubble.

Bubble start The start of the bubble slice.

Bubble end The end of the bubble slice.

Bubble type This field is application dependent. It is used as an identi-
fier for different message payloads and should be unique in the Bub-
bleStorm network.

Payload The actual payload, that the receiver has to process.

2.2.7 The User Connection Protocol

In order to allow nodes to send data over a user defined dedicated connection,
an user defined application creates a connection according to the following
protocol.
When the TCP/IP connection is established the initator sends the ASCII
string

BubbleStorm UserConnect/<type> \n\n
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where <type> should be the name of the application specific connection
type. A node that whishes to accept the connection must respond with the
ASCII string

BubbleStorm OK \n\n

Any other response is handled as a deny for the connection request. A
connect rejection may have various reasons. E.g. the number of incoming
connection slots is exhausted or the application type is not supported.
After the connection is established the transferred content has to be com-
pletely specified by the used user application.



Chapter 3

Implementation

The beginning of this chapter gives an overview of the prototype followed by
the API description for applications that are build on top of the prototype.
In the end a summary of the problems and decisions made in order to solve
these are presented.

3.1 Overview

Figure 3.1: Overview of the Prototype

This overview shows of which parts the prototype consists. Figure 2.1
shows the parts of the BubbleStorm prototype. The prototype consist of
the three parts ’topology’, ’measurement’, and ’BubbleCast’ and builds on
TCP/IP as the underlying network layer. The interface between the proto-
type and the TCP/IP networking ability is provided by Java NIO, which
allows to do non blocking I/O operations. This part of the implemen-
tation is based on the LimeWire implementation, that can be found at
’www.limewire.org’. The topology part and the application developer’s in-
terface are the only parts that may create or close TCP/IP connections. All
parts transmit messages over the created overlay network. There exist two
special connections: the uplink, which is used as an initial connection to join
the BubbleStorm network and the fishlink which is used to save measurement
data when a node leaves. These connections can be the same connection if
this connection is kept until a node decides to leave. But if the uplink node
left while the new node is still connected then the new node has to find a
new fishlink in order to duly leave the BubbleStorm network.

53
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3.2 Design

BubbleStorm is based on TCP/IP as the underlying infrastructure. TCP/IP
was chosen as the networking protocols because they are connection oriented
which made it easier to create the overlay structure.

3.2.1 I/O Handling

Structure

The bubblestorm.router.RouterService class concentrates the core peer be-
haviour which is the topology maintenance, measurement and BubbleCast
handling. All timeout checks and ping distributions are controlled by the
RouterService. It also handles all incoming messages ,except for user con-
nections, and is responsible to follow the protocol. The RouterService has a
RouteTable which contains the information of all established connections.
Each socket is encapsulated in a bubblestorm.nio.connection.Connection. Con-
nections have information about their location and the role they are playing
e.g. master, slave. Each connection has also a message queue that is linked
to the role and location in the route table.
The I/O event system is concentrated in the NIODispatcher class. Since
the Singleton pattern has been mostly avoided in the prototype multiple in-
stances can be run independently of each other. It is also possible to have
more than one NIODispatcher for a BubbleStorm node although it is not
needed, because if a task needs much processing time a new thread should
be started and the NIODispatcher should resume the dispatching process.

Socket Creation

A socket may be created by accepting an incoming request or by initiating a
connection. The socket input and output is piped through objects which are
the bandwidth throttle, the message writing objects. It is also possible to
pipe the message through a de-/obfuscator and deflater/inflater. This makes
it very flexible for processing the byte stream on a lower layer. In figure 3.2.1
is shown how sockets prepared for input output operations.

Server

The main server functionality is contained in the bubblestorm.nio.Acceptor
class. The accepting channel is registered with the NIODispatcher after it is
created. Server sockets are created like the usual sockets by using the factory
methods of the bubblestorm.nio.SocketFactory class, so the actually returned
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socket may be a customised socket which simply extends java.net.Socket
respectively java.net.ServerSocket. The NIODispatcher notifies the Accep-
tor by calling handleAccept(Socket socket) from the BubbleStormAcceptO-
bserver object which is registered at the ServerSocket. If the server should
be shut down then the port has to be set to zero. After this has been done
no further incoming sockets can be accepted. Since all server functionality
is bundled into the Acceptor class it is easy to make changes of the server or
to add UPnP support.

Connecting

New socket are created by calling SocketFactory.newSocket(NIODispatcher)
in the ’bubblestorm.nio’ package. The newly created bubblestorm.nio.NonBlockSocket
can then be connected by calling the provided connect methods. A comfort-
able way to react on a successful connect is to pass a ConnectObserver object
to the connect method which executes user defined code when the connec-
tion has been established. This makes the connecting process event based
which makes the post connect process more flexible and simpler. It allows
an initialisation of objects that wait on the established connection which is
better than giving each connection a type and when a connect event occurs,
a onConnect method has to handle each type differently.

Sending and receiving messages

After the connection has been established, the connection has to be ini-
tialised for reading and writing. Reading is done by a MessageReader which
reads data from the underlying socket and then encloses the data into the
appropriate message. Before the message is passed to the RouterService the
Connection handles the message itself and sets its attributes as needed, e.g.
the topological location passed by a MasterHello or SlaveHello.
Writing messages is similar to reading messages. Here a MessageWriter is
created which processes messages before they are sent and puts them into
a ByteBuffer object in order to transmit the message. The MessageWriter
takes a ThrottleWriter as its direct underlying channel. So the upload band-
width may be controlled. the next part describes the functionality of the
bandwidth throttle.

3.2.2 Bandwidth Throttle

The bandwidth throttle works as follows. Whenever a channel wants to read
or write something it has to interest in the underlying channel. The under-
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lying channel uses the handleRead() or handleWrite() method in order tell
the channel that it may now read or write. When e.g. a ThrottleWriter
receives a handleWrite() call it requests bandwidth from a common band-
width throttle. It reserves the minimum of the desired bandwidth and the
available bandwidth that the throttle granted the ThrottleWriter. Then the
ThrottleWriter informs the upper channel that it is now able to write to the
socket. The ThrottleWriter limits the possible transmission to the value that
has earlier been determined. After the write process has been finished any
left bandwidth is returned to the throttle so it may continue to distribute
bandwidth to ThrottleWriters.
After some time has passed the NIODispatcher informs the bandwidth throt-
tle about the new time. When enough time has elapsed the bandwidth throt-
tle resets the available bandwidth to the configured value.

3.2.3 Node Cache

The node cache can be used for local files and for web based caches. The
format of the files are exactly the same for the local cache and web cache.
It only contains ip:port pairs that are seperated by a new line. The node
cache retrieval is bound to the class PlainHostCache. The format for the
cache can be changed e.g. to XML by exchanging the PlainHostCache by
a XMLNodeCache. Since the data that is stored at the node cache is very
simple a XML file would be too intricate. A HostCache provides two methods
for retrieval. The first one is getAddresses(java.lang.String filename) which
tries to retrieve the node cache from a locally stored file. The second method
is to call getAddresses(java.net.URL url) which tries to obtain the addresses
provided at the given url. In my opinion these methods are adequate for a
peer to peer system.

3.2.4 Message Overview

BubbleStorm specific messages don’t contain string values but bit fields. This
makes it easier to extract values and saves bandwidth. Since the messaging
system should handle different message types all messages must have a com-
mon super class which is bubblestorm.messages.Message. This class defines
a getMessage(ByteBuffer) method which the specific message types have to
implement. For each message type exist additional to an own message class
a parser which is able to decode the message that has been received. The
decoding of a message works like a simple finite state machine which decides
on the first 4 bytes, the message type, what to do next. The length of each
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message is provided by the appropriate parser. An overview of the messages
provided can be seen in figure ??.

Message priorities

Messages are stored in priority queues in order to send the most important
messages first. The priorities are set as follows:

Priority 0 • MasterHello

• SlaveHello

• Cancel

Priority 1 • Redirect

• MergeEdge

• BreakEdge

Priority 2 • SplitEdge

• Ping

Priority 3+ • BubbleCast ( 3 )

Topology messages have priority 0 and 1 except for the SplitEdge message.
The hello messages have to be sent before any other messages because these
messages determine the location of the connection and are important to the
topology. The messages with priority one makes only sense to the receiver
if a hello message has been received first. The Cancel message has also a
priority zero because it may interfere with a MergeEdge message. If the
connection to new node should be canceled but the MergeEdge message has
been sent before the Cancel, then the MergeEdge will be ignored because
the receiving node assumes the MergeEdge will be retransmitted to the new
node. After the Cancel has been sent the sender, who wants to leave, waits
for a shutdown as a reaction on the MergeEdge it sent. Since the MergeEdge
had been ignored the leaving node will wait for an undefined time.
Messages with priority 3 are the SplitEdge message and the Ping message.
These message types are important to integrate new nodes and to measure
important network sizes. These messages should also be send after the topol-
ogy messages. Ping messages have to be redistributed to the neighbours of
each node. Therefore the neighbours have to be set before Ping messages are
sent which makes it necessary to send topology specific messages before Ping
messages.
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3.2.5 Congestion Control

The congestion control is only used for BubbleCast messages and works as
follows. Whenever a BubbleCast message has to be processed by the router a
check is done how long the message queues are. If the sum of the bytes to be
transferred divided by the possible upload rate is greater than four seconds
all further BubbleCast messages are dropped. If the length is less than two
seconds all messages are processed and routed to, random neighbours. In
the interval between two and four seconds messages with a low remaining
distribution amount are more likely to be dropped.

relativeSize =
s

bubbleSize

oneSize =
1.0

relativeSize

window = 4s− log(relativeSize)

log(oneSize)
) ∗ (4s− 2s)

The window is calculated as follows. At firs the remaining bubble size s is
divided by the complete bubble size bubbleSize, which is determined by the
formula given in the protocol definition in section 2.2.6 on page 46. If the
calculated window is smaller than the current time a message would have
to wait in order to be transmitted then it will be dropped. This is a very
simple and effective method and causes only small reduction of the resulting
bubble.

3.2.6 Routing

All messages are passed to the RouterService which decides how to react on
incoming messages. It manages the messages that have to be sent in order to
keep the network running. It also is responsible to create connections when
needed e.g. in case of an incoming MergeEdge request. All messages have a
predefined target except SplitEdge messages and BubbleCast message which
are distributed to a random neighbour.

3.2.7 BubbleCast

BubbleCast messages are handled in the way it was described in the protocol
definition. Every host in the BubbleStorm network should have a handler
for each BubbleCast message type. If no for a received BubbleCast message
exist then an error message is written to a log and the message is forwarded
if it is not filtered by the congestion control. The certainty factor is assumed
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three which corresponds to a 95% hit probability and the balanced factor is
assumed 0.5.

3.2.8 Utilities

The implementation is based on Java NIO. Because NIO does not block
threads when waiting for incoming or outgoing traffic a very small amount of
threads can be used to do all I/O operations. It introduces channels that can
be registered with one ore more selectors. Buffers are used to read or write
from Channels that are writable respectively readable. I used the Limewire
implementation of the I/O system for the prototype because it is mostly de-
bugged, works very effective and it was easy to integrate. An important point
for me to use a part of limewire was that it provides bandwidth throttles for
Java NIO Sockets.
For details of Java NIO see the official references at “http://java.sun.com/j2se/1.4.2/docs/guide/nio/”
The Limewire implementation can be found at ”www.limewire.org/limewire.zip”
For logging the package LOG4J from “http://logging.apache.org/log4j/docs/”
is used.

3.3 API description

This section describes the application programming interface for applications
that are build on top of the BubbleStorm prototype. It is shown how to run
a BubbleStorm node, how to integrate applications into the prototype, how
to send BubbleCast messages, how to create user defined connections. Along
with the prototype comes the javadoc documentation. This documentation
describes all important methods for a developer who wants to update and
expand the prototype.

Creating a new BubbleStorm node

A new node can simply be created by creating a new instance of the bub-
blestorm.router.RouterService class. The RouterService class provides
many features like joining and leaving a BubbleStorm network, starting Bub-
bleCast messages and creating user connections.

Joining a BubbleStorm network

After a node is created it has to join an existing BubbleStorm network.
Therefore the method RouterService.join() has to be called. When joining
one can choose how to get a first connection. If join() is called with no
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arguments then the default local host cache is used (’./hostcache.txt’). The
join method also may be called with a String as the argument where the
String value is interpreted as a filename to a local host cache. The third
possibility is to call join(url) with a java.net.URL as the argument. In this
case a web cache is used which should be located at the given URL. The last
possibility to call join is to give a java.net.InetSocketAddress as the argument
which instructs the router to join by the given address. A node may create a
new BubbleStorm network by calling RouterService.createSelfLoop() which
can only be done if the node has not already joined any existing BubbleStorm
network.

Leaving the BubbleStorm network

When the user wants to quit he should call the RouterService.leave() method.

Registering applications

In order to use the BubbleStorm network for applications, each used message
type has to be registered at the router. Therefore a message handler has to
be created which implements bubblestorm.bubblecast.IBSTypeHandler. A
sample implementation of a message handler in the figure 3.3. The methods
getBalanceFactor() and getCertaintyFactor() are message specific. The re-
turn values have to be chosen by the application developer according to the
protocol definition. The method getBubbleType() should return a unique
value for the kind of BubbleCast message. When messages of a certain type
are received then the method processMessage(. . . ) of the registered message
handler is called. As a parameter the transmitted payload is given. The
payload is the raw byte stream that has been received. The decoding of the
payload should be handled by each application so the application messages
experience a high flexibility and platform independence. Additional to the
payload the address of the original sender of the BubbleCast message is pro-
vided. This is useful if the originator provides a file list of shared files for
example in order to let other people know who provided the message.

Sending BubbleCasts

BubbleCast messages can be sent by calling RouterService.bubblecast(bubblestorm.bubblecast.IBubbleCastMessageType
msg). The content of each BubbleCast message is application specific. Each
message type should have its own bubble type. E.g. a query message may
have bubble type 3 and a publish message may have a bubble type 4. It is im-
portant that the corresponding message handler, that were described above,
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have the same bubble type as the messages in order to correctly handle the
messages.

Creating user connections

Connections to other BubbleStorm nodes may also be created by calling
methods from the RouterService class. The RouterService class provides the
method connect(InetAddress address, int port, String connection-
Type, AppConnectObserver observer). The bubblestorm.applications.AppConnectObserver
interface defines the method ’void handleConnect(AppConnection connec-
tion)’ which is called when the connection is established.

Accepting user connections

In order to accept incoming user connections an acceptor handler has to
be registered. Therefore an AcceptObserver has to be registered at the
RouterService. The RouterService can then dispatch the created connection
to the appropriate application when the connection has successfully been
established.

Reading from connections

In order to read from sockets, a bubblestorm.nio.channel.ChannelReadObserver
has to be implemented and AppConnection.setReader(ChannelReadObserver
o) has to be called. The ChannelReadObserver interface defines a method
handleRead() that is called when the connection has data to be processed.
The application may also implement an interface like MessageReceiver bub-
blestorm.nio.connection which is a callback to the application for the events:
a mesage has been completely received and the other side closed the connec-
tion.

Writing to connections

When an application has to send a message it has to call setWriter(ChannelWriter
o) once on the new created AppConnection object. Whenever something has
to be written the method ’channel.interestWrite(this, true)’ should be called
on the underlying channel. When the channel is interested in writing data
it has to wait until it is able to actually send the data. When it becomes
available the method handleWrite of the ChannelWriter object is called.
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3.4 Conclusion

The I/O handling of the prototype is flexible and allows to extend the pro-
totype very easily. It uses the java new IO for improving the performance.
The most functions of the prototype are event based. The general problem
of throttling the bandwidth was solved transparently to upper layers which
allows the programmer to pay less attention when programming an applica-
tion or expanding the prototype.
For handling a BubbleCast message by an application, the application has
to register a handler for each message type. These handlers can be added
dynamically at runtime and run application specific code. This code may be
a matching algorithm for example. This seems a good solution because each
application can define own bubble types and the payload of a BubbleCast
message can be handled individually and platform independent.
The messages of BubbleStorm are fixed length and variable length. Variable
length messages have to be used for BubbleCast messages since the payload
length may vary. The messages have priorities because important messages,
like topology and measurement messages, have to be sent unconditionally
and in the correct order.
The congestion control only dismisses BubbleCast messages which create
only a small sub-bubble compared to the overall bubble size. So the damage
to a bubble should be minimally and the congested node should be relieved.
Since users do not update the BubbleStorm software regularly it may take
a long time, the nodes of the network may work with different versions of
which some may not know every possible application. So a total bubble size
field in the BubbleCast message has to be used for the congestion control to
work properly and doing less damage to the bubbles. It’s not desirable to
have the new features only working properly when the majority of the nodes
has been updated as this may take at lot of time.
The API defines some interfaces for an application developer. The devel-
oper may create user defined connections and reuse the IO subsystem of the
BubbleStorm prototype. In order to differentiate user connections from Bub-
bleStorm messages the application has to send at first an ASCII string that
describes the connection type.
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Figure 3.2: Registering channels for I/O
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ThrottleWriter : ThrottleListener NonBlockThrottle : NonBlockThrottle NIODispatcher : NIODispatcher

Processing loop
process()

1

Selector select ready channels
Selector.select

1.1

handle ready Throttles
readyThrottles(Collection<SelectionKey>)

1.2

Callback for each Throttle that some keys are ready

selectableKeys(Collection<SelectionKey>)
1.2.1

interested contains SelectionKey
interested.contains(SelectionKey)

1.2.1.1

callback for requesting bandwidth
requestBandwidth()

1.2.1.2

available=request()
request(): int

1.2.1.2.1

process the ready channel
process(long,SelectionKey,Object,int)

1.2.1.3

callback to release bandwidth
releaseBandwidth()

1.2.1.4

available=0
release(int)

1.2.1.4.1

Figure 3.3: Processing ready channels

Connection : Connection

MessageWriter : MessageWriter

ThrottleWriter : ThrottleWriter

NIOSocket : NIOMultiplexor

create MessageWriter

MessageWriter(ConnectionStats,MessageQueue,SentMessageHandler,Socket)

1

create ThrottleWriter
ThrottleWriter(Throttle)

2

Set ThrottleWriter as write channel
setWriteChannel(InterestWritableByteChannel)

3

Set write observer on underlying channel
setWriteObserver(ChannelWriter)

4

Figure 3.4: Writer creation
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1 int l i s t e n p o r t = 1489 ;
2 RouterServ ice r s = new RouterServ ice ( l i s t e n p o r t ) ;
3

4 try {
5 // uses the d e f a u l t l o c a l node cache ’ . / hos tcache . t x t ’
6 r s . j o i n ( ) ;
7 } catch ( IOException e ) {
8 // do some excep t i on hand l ing
9 }

10 // uses the s p e c i f i e d f i l e as the node cache
11 // rs . j o i n ( S t r ing f i l ename ) ;
12 // uses the u r l as a hos t cache
13 // rs . j o i n ( java . net .URL ur l ) ;
14 // connects to the s p e c i f i e d address
15 // rs . j o i n ( java . net . Ine tSocke tAddress address ) ;

Figure 3.5: Creating a BubbleStorm node

1 public class XMessageHandler implements IBSTypeHandler {
2 public f loat getBalanceFactor ( ) {
3 return 2 .0 f ;
4 }
5 public int getBubbleType ( ) {
6 return 17 ; // the unique message type
7 }
8 public f loat getCerta intyFactor ( ) {
9 return 1 .5 f ;

10 }
11 public void processMessage ( InetAddress or ig inAddress ,
12 int or ig inPor t , byte [ ] payload ) {
13 // proces s the BubbleCast message
14 // e . g . app . proces s ( or ig inAddress , or i g inPor t , pay load ) ;
15 }
16 }

Figure 3.6: Creating BubbleCast message type handlers
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1 IBSTypeHandler handler = new XMessageHandler
2 try {
3 r s . r e g i s t e r ( handler ) ;
4 } catch ( IOException e ) {
5 // do some excep t i on hand l ing
6 }

Figure 3.7: Registering BubbleCast a message handler

1 r s . bubblecast (new IBubbleCastMessageType ( ){
2 public byte [ ] getData ( ) {
3 Charset c = Charset . forName ( ”UTF−8” ) ;
4 return c . encode ( ”query s t r i n g ” ) . array ( ) ;
5 }
6 public int getType ( ) {
7 return 3 ;
8 }
9 } ) ;

Figure 3.8: Sending a BubbleCast message

1 public class XConnectObserver implements
2 bubblestorm . bubblecast . AppConnectObserver {
3 public void handleConnect ( AppConnection connect ion )
4 throws IOException{
5 . . . handle e s t a b l i s h e d connect ion here . . .
6 }
7 public void handleIOException ( IOException iox ) { . . . }
8 public void shutdown (){ . . . }
9 }

Figure 3.9: Connecting to a host

1 RouterServ ice r s = . . . ;
2 r s . connect ( ip , port , ”MyAppConnectionType” , new XConnectObserver ( ) ) ;

Figure 3.10: Connecting to a host
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1 RouterServ ice r s = . . . ;
2 r s . accept ( ”MyAppConnectionType” , new AppAcceptObserver ( ){
3 public void handleAccept ( AppConnection connect ion )
4 throws IOException{
5 . . . handle connect ion here . . .
6 }
7 } ) ;

Figure 3.11: Accepting a connection

1 ByteBuffer bu f f e r = . . . ;
2 AppConnection c = . . . ;
3 c . setReader (new XReadObserver ( ) ) ;
4 c . s e tWr i te r (new XChannelWriter ( ) ) ;

Figure 3.12: Registering for read and write
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1 public class XReadObserver implements ChannelReadObserver {
2 /∗∗ the source channel ∗/
3 private InterestReadableByteChannel channel ;
4 /∗∗ the r e c e i v e r o f the messages , which
5 ∗ shou ld be the corresponding connect ion ∗/
6 private MessageReceiver r e c e i v e r ;
7 public XReadObserver ( MessageReceiver r e c e i v e r ){
8 this . r e c e i v e r = r e c e i v e r ;
9 }

10 public void handleRead ( ) throws IOException {
11 . . . read implementation here . . .
12 }
13 public void shutdown ( ) {
14 synchronized ( this ) {
15 i f ( shutdown )
16 return ;
17 shutdown = true ;
18 }
19 r e c e i v e r . messagingClosed ( ) ;
20 }
21 public InterestReadableByteChannel getReadChannel ( ) {
22 return channel ;
23 }
24 public void setReadChannel ( InterestReadableByteChannel newChannel ) {
25 i f ( newChannel == null ){
26 throw new Nul lPo interExcept ion ( ”Cannot s e t channel to nu l l ” ) ;
27 }
28 channel = newChannel ;
29 }
30 }

Figure 3.13: Creating a ChannelReadObserver
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1 public class XWriteObserver implements ChannelWriter {
2 /∗∗ The s ink channel we wr i t e to & i n t e r e s t o u r s e l v e s on . ∗/
3 private InterestWritab leByteChanne l channel ;
4 /∗∗ A ca l l b a c k f o r hand l e r s who wish to proces s
5 ∗ messages we s u c c e s f u l l y sen t . ∗/
6 private f ina l SentMessageHandler sendHandler ;
7 public XWriteObserver ( SentMessageHandler handler ){
8 this . handler = handler ;
9 }

10 public boolean handleWrite ( ) throws IOException {
11 . . . wr i t e implementation here . . .
12 /∗∗ re turns t rue i f w r i t i n g i s not ye t f i n i s h e d ∗/
13 }
14 public synchronized InterestWritab leByteChanne l getWriteChannel ( ) {
15 return channel ;
16 }
17 public synchronized void setWriteChannel (
18 InterestWritab leByteChanne l newChannel ) {
19 i f ( newChannel == null ){
20 throw new Nul lPo interExcept ion (
21 ”Cannot s e t channel to nu l l ” ) ;
22 }
23 channel = newChannel ;
24 channel . i n t e r e s tWr i t e ( this , true ) ;
25 }
26 public synchronized void shutdown ( ) {
27 /∗∗ i f noth ing i s l e f t to wr i t e then shutdown output ∗/
28 }
29 /∗∗ a method f o r sending messages ∗/
30 public void send ( message ){ . . . handle message to be sent . . . }
31 }

Figure 3.14: Creating a ChannelWriter
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Chapter 4

Evaluation

In this chapter the results of the test of the prototype are presented. At first
the configuration of the test system is given. After that I give a overview of
the results of the tests and in the end I evaluate the results particularly with
regard to the results of the simulator 1

4.1 Evaluation of BubbleStorm

performance of crash recovery, bubblecast match, bubblecast distribution

4.2 Evaluation of Prototype

Performance of I/O, message processing, Algorithms used

4.3 Evaluation of Simulation

1The results of the simulator has been published in [17]
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Chapter 5

Future Work

1. BubbleCast packet lifetime

2. remember seen BC messages for incremental search (Bubble ID, end)

3. Redirect Client

4. Match messages

5. dynamic location count

6. dynamic balanced factor adaption

7. extend measurement to measure node churn

8. UPnP

9. Proxy support

10. SSL / TSL support

11. compression

12. real applications e.g.

• wiki

• blog

• file sharing

• chat

• video conferencing / live streaming

• VoIP

• multiplayer gaming

73



74 CHAPTER 5. FUTURE WORK



Chapter 6

Conclusion
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