
Performance Comparison of
DHT based Peer-to-Peer
Full-Text Search Systems
Diploma Thesis
Christian J. Schwan

Department of Computer Science

Databases and Distributed Systems
Prof. Alejandro P. Buchmann

Supervisor: Dipl.-Inform. Christof Leng

Abstract

While Peer-to-Peer systems have their advantages in terms of availability and load balancing, it
is not clear if they can compete with the speed and result quality of server based full-text search
engines. As of yet it is even unclear which Peer-to-Peer full-text search method performs best, or
at least has the most advantages in terms of latency, throughput, bandwidth consumption and
result quality.
This diploma thesis analyzes two different approaches to Distributed Hash Table based Peer-to-
Peer full-text search: parallel search with local result intersection and iterative implementation
of recursive search with remote result intersection.
A typical file sharing scenario with files published and queried by tokens, generated from their
filenames, is used in combination with the PeerfactSim Peer-to-Peer network simulator to obtain
measurements of query processing in terms of traffic, throughput and response time.
The results show that, while not matching the execution time of server based full-text search,
Peer-to-Peer algorithms are well able to achieve an execution time fast enough for most appli-
cations. However, they strongly depend on the amount of shared data. Providing a data set as
big as Wikipedia for full-text search might already be beyond the limits of feasibility on current
Peer-to-Peer networks.

Contents

1 Introduction 4

2 Related Work 6
2.1 DHT Networks . 6

2.1.1 Idea behind DHT . 6
2.1.2 Churn . 6
2.1.3 Real World Applications . 7

2.2 Full-Text Search . 8
2.2.1 Inverted Index . 8
2.2.2 Publishing . 9
2.2.3 Querying . 10
2.2.4 Optimizations . 10

2.3 PeerfactSim . 11

3 Implementation 13
3.1 Publish . 14
3.2 Search . 17

3.2.1 Parallel Search with Local Result Intersection 17
3.2.2 Recursive Search with Remote Result Intersection 19

4 Analysis Framework 24
4.1 Simulator Configuration . 24

4.1.1 Physical Network Layer . 26
4.1.2 Overlay Network Layer . 27

4.2 Measurement . 29
4.3 Shared Data . 30

5 Measurements and Analysis 33
5.1 Result Quality . 34
5.2 Network Load . 35
5.3 Churn . 37
5.4 Lookups . 39
5.5 Traffic . 40
5.6 Query Execution Time . 44

6 Conclusion 46
6.1 Discussion . 46
6.2 Future Work . 47

List of Figures 48

2

List of Tables 48

Listings 49

Bibliography 50

3

1 Introduction

Purely server based applications are pretty common in networks. While a single server can be
easy to implement, the availability and integrity of the service it provides stand and fall with
the server itself. Furthermore, it produces running costs due to the necessary maintenance,
hardware and power consumption. To avoid the single point of failure problem, and achieve
some load balancing, data is usually spread and replicated across multiple servers, which in
turn results in even more operating costs. Peer-to-Peer networks spread data across the whole
network, thus eliminating the need for a server, and providing availability and resilience against
central manipulation. While sending and receiving data from a Peer-to-Peer network is working
quite well, the quality of its full text search algorithms is yet to be determined. There are papers
on the feasibility of using common Peer-to-Peer full text search algorithms for different types
of content, and approaches to calculate or approximate their performance [1][2][3][4], but no
measurements under realistic conditions have been made so far. This diploma thesis focuses
on comparing the performance of existing Peer-to-Peer full text search algorithms in real world
scenarios.
Structured Peer-to-Peer networks are regarded as an improvement over unstructured Peer-to-
Peer networks. They use consistent hashing to assign ownership of data to particular peers,
while in unstructured networks data is arbitrarily assigned to peers. Implementing a straight
forward search is easier on an unstructured network still making use of servers and their lo-
cal indexing and search functions, but it is difficult to achieve scalability, as it would require
multiple servers working together on searches, thus limiting the capacity of unstructured Peer-
to-Peer networks on the quality of their servers. A serverless full text search on unstructured
networks would require flooding the query through the network, which is suboptimal regarding
performance and traffic.
Developing efficient full text search algorithms on Distributed Hash Table (DHT) based struc-
tured Peer-to-Peer networks is still an interesting and promising topic. This far there have been
several suggestions for improvements [5][2], but not much has been implemented, and even
less has been implemented into existing, commonly available Peer-to-Peer applications. This
diploma thesis examines the following full text search algorithms, implemented on a Kademlia
network, using the PeerfactSim Peer-to-Peer network simulator:

• parallel search with local result intersection

• iterative implementation of recursive search with remote result intersection

Those two algorithms present two opposing types of full text search. The parallel search mainly
focuses on a short delay between sending the query and displaying the results, while the recur-
sive search aims to save bandwidth by reducing the transmitted query results.
The algorithms are examined with the use of realistic data. For that purpose a list of files
is published across the simulated network and searched for by keywords extracted from their
filenames. The time, traffic and bandwidth it takes to perform searches are first analyzed in
theory, then implemented and measured.
It is the goal of this diploma thesis to show the performance of currently used Peer-to-Peer full
text search algorithms. In Chapter 2 related work is presented by describing the state of the

4

art on currently used algorithms in detail and giving a brief estimated performance evaluation
based on their design. Chapter 3 describes the implementations of the two aforementioned
algorithms on PeerfactSim. The framework used to perform the measurements is described in
Chapter 4. Chapter 5 then presents the measurements of the simulation and an evaluation on
the algorithms’ performance.

5

2 Related Work

To evaluate full-text search algorithms a basis on which they are run has to be chosen. This
basis consists of two parts, the overlay network and the simulator on which the evaluation is
performed. The network type chosen for this thesis is the Distributed Hash Table, of which
multiple real world applications exist. The following subchapters provide information on them,
full-text search in general and the PeerfactSim network simulator.

2.1 DHT Networks

In its early days, though being far more versatile, Peer-to-Peer networking was mainly used for
file sharing. After several legal issues with copyright violations through those networks its usage
was shifted towards less complicated legal grounds, like instant messaging, Internet telephony
and online gaming. These partly proprietary Peer-to-Peer networks are still mostly unstructured
and make use of servers.
Structured Peer-to-Peer DHT networks are a more modern approach, eliminating the need for
servers and running entirely on the network’s peers. They however need to maintain a list of
known peers to be able to rejoin the network. This list is stored when the client application is
shut down. If a peer has not yet been part of the network it needs to perform a bootstrap where
one known peer’s contact information has to be entered manually. Real world applications
either make use of bootstrap contacts and even complete known peers’ lists, maintained by some
enthusiastic users or provide the needed information through one or several fixed contacts.

2.1.1 Idea behind DHT

The idea behind Distributed Hash Hables is to provide a simple and fast way for retrieving data
previously stored into the network.
In a DHT network every peer has an unique identifier, which is used as reference to distribute
a hash table across the network. Each peer non-exclusively maintains a subsection of the hash
table with hashes similar to its identifier. It is up to the implementation to determine similarity
and therefore responsibility for keys. This Distributed Hash Table is available to every peer in
the network and can be used like any other hash table.

2.1.2 Churn

In a real world Peer-to-Peer network the number of nodes is never fixed. It is in a permanent
state of peers joining and leaving the network. This is called churn. By design DHT networks
do not use constantly available supernodes or servers, this causes multiple problems. For once
data stored into the network may get lost if all its responsible peers leave the network. This
is commonly circumvented through publishing it to multiple peers, which in turn republish it

6

hourly. If the number of peers is too low or the republish interval is too high the data may still
be lost, while contacting too many nodes or republishing too often generates much traffic and
negatively affects the performance of the whole network. Another problem arises when a node
tries to join the network and all its stored known contacts are no longer available, in which case
the same steps as for joining the network for the first time need to be taken. This cannot be
circumvented, but a sufficient sized list assures that the client application may be disconnected
from the network for several weeks and still be able to rejoin the network. The list’s size is only
limited by the number of peers contacted during a session and the available storage space on
the client computer, but for real world applications such as KAD a list of 200 contacts has proven
to be enough.
Churn is commonly measured by either the churn rate, which describes the rate at which peers
join and leave the network during a certain period of time in percent, or the mean session
length, which describes the average time peers stay connected to the network.

2.1.3 Real World Applications

The most notable categorization of DHTs is the geometrical shape, which interpreting their
nodes as points and the connections between two nodes as a line results in. Analyzing this
shape gives a quick estimate of the needed maintenance’s complexity.

CAN (content adressable network) [6] describes a decentralized DHT Peer-to-Peer infrastruc-
ture running on a dynamically positioned virtual n-dimensional Cartesian coordinate space.
Every node is responsible for a distinct zone of the coordinate space and together the nodes
cover the entire space. When joining the network a node chooses a random position, dividing
this zone equally with the node previously responsible for it. Fairness is not guaranteed in this
model, as it would require complete knowledge of the network on join.

In Chord [7] nodes form a virtual ring with a 160 bit address space. The SHA-1 hash function
is used for object and node identifiers. Nodes keep track of their predecessor and successor, and
are responsible for objects between their predecessor and themselves. The so called finger-list
contains additional nodes with their distance doubling for each entry, therefore, insertion and
lookup costs scale logarithmically with the number of nodes.

Pastry [8] is similar to Chord, its address space is circular forming a virtual ring. Each node
keeps track of its immediate neighbors. The main advantage over Chord is an implementation
of minimizing the distance messages travel according to a scalar proximity metric.

Tapestry [9] is similar to Pastry. It uses surrogate routing and does not maintain a direct
neighbor-list. Instead, it keeps a multiple-level list, where on each level entries’ IDs match on
the i’th digit of the node’s ID. Routing is done by incrementally selecting nodes that match the
i’th digit of the desired ID.

In Kademlia [10] nodes are represented as leaves in a binary tree. They communicate using
the UDP protocol, and each node is identified through an ID the size of the used hash values.
Publishing a file is done by generating its hash and sending this hash and file location informa-
tion to all nodes whose ID is similar to that hash. Similarity is determined using the XOR metric,
which is also used to determine the distance between nodes. Every node maintains one list for
every bit of the ID range, representing nodes with a specific distance. Those lists are also called

7

k-buckets due to their aim of storing up to k nodes. To lookup a file a certain amount of k nodes
closest to the file’s ID, typically ten, is determined and then queried simultaneously. They either
return a list of their known sources for the file or the closest node they have in their routing
table. This way the lookup gradually approaches the responsible nodes.

Overnet is a direct implementation of the Kademlia Peer-to-Peer protocol. Full-text search is
not supported, so all file hashes have to be obtained using a server, or following links on web
pages. In late 2006 all Overnet related sources were taken down, since then it is only used as
communication protocol for decentralized botnets [11].

The Kademlia protocol is also used for trackerless torrents in various BitTorrent implementa-
tions. Again, as in Overnet there is no full-text search function.

The KAD protocol [12][13], an implementation based on the Kademlia Peer-to-Peer network
protocol, is currently used by file sharing programs such as eMule v0.40+, MLDonkey v2.5-
28+, Lphant v.3.50 beta 2+ and aMule. A full-text search using partitioning by keyword is
implemented, but limited to one keyword with simple result-filtering using the remaining key-
words and additional attributes, such as file size, extension and a variety of meta-data.

Kademlia is robust, scalable and efficient, providing low maintenance cost, thus granting a
performant network. For this and its widespread usage in real world applications, it is chosen
as platform on which this thesis’ search algorithms are implemented and examined.

2.2 Full-Text Search

When using Peer-to-Peer networks there are several ways of implementing full-text search: using
one or multiple indexing servers, flooding the search queries over the overlay network, and
intersecting index lists stored in the Distributed Hash Table. A search involving servers defies the
purpose of Peer-to-Peer networks and is therefore not considered at all by this thesis. Flooding
the network with search queries is not effective enough as it causes too much traffic and does not
provide a satisfying result quality, therefore it is not considered either. The most effective and
scalable search algorithm would be to directly involve the Distributed Hash table for handling
search queries. This can be done by distributing an inverted index across the network.

2.2.1 Inverted Index

An inverted index is used for mapping content, such as words, to its locations. For the pur-
pose of full-text search in DHT networks it maps keyword hashes to multiple data hashes, each
representing one data previously published to the DHT network. The inverted index is stored
directly into the Distributed Hash Table, with the keyword hash representing the key and the
list of data items stored as value. It is built and maintained through the publishing algorithm
which extracts a list of keywords from a data item, where the method of extraction is up to the
implementation, and then, for each keyword stores the file’s location into the inverted index
by sending it to the peers responsible for the keyword hash. This way every peer maintains an
inverted index for all the keywords it is deemed responsible for.

To perform a full-text search query for a single keyword the entries for the corresponding key-
word hash are retrieved from the inverted index by querying the peers responsible for the

8

keyword hash. Queries with multiple keywords are divided into sub-queries for every single
keyword and their results are intersected.
As the inverted index can be fully integrated into the DHT network it can be used directly
without additional steps. Any additional steps and proceedings can be seen as optimizations
and only influence the data transfer between the peers, not the inverted index.
Additional full-text search functionality and features require storing more information for each
data, such as the position of the keyword and the surrounding text for citation, a filename for
file sharing or the title of the document for content search. It is up to the implementation to
determine which additional information is required and whether it is published with the file’s
contact information or under the file’s hash.

2.2.2 Publishing

To provide full-text search nodes need to take an additional step while publishing data to the
network. The published data has to be assigned to keywords by its owner, which may be based
on the content, the filename, meta-data stored in it or by querying external databases for addi-
tional information. Once a list of keywords for the data has been created those keywords are
each sent to their respective peers. The amount of peers and how they are determined is up to
the implementation. In common file sharing applications a hash for each keyword is generated
which is then sent to peers with IDs similar to this keyword hash, together with the hash of the
file itself and any desired amount of additional information. As an example the full-text search
algorithm of the KAD network determines similarity by the first 8 of its 128 bit IDs, which means
every node whose ID has the same first 8 bit as the keyword hash is determined responsible for
said hash. When using an inverted index publishing already has a dominant influence on the
search result quality, as this step determines how many peers get the file information. Con-
sidering the commonly used hourly republishing of data a lot more peers are contacted, and
therefore, a lot more traffic and network load are generated for the publishing of one document
than for one full-text search query.
It is crucial for a performant network to find a balance between network traffic for publishing
and for full-text search. One of the factors involved is the amount of peers contacted while
publishing. The more peers knowing a specific document, the easier it is to find. Ideally if every
peer responsible for one keyword of the document knows it then the first full text-search query
will already return a complete result thus limiting the needed traffic to a very low amount. This
in turn would mean that for publishing every responsible peer has to be contacted, leading to
a very high amount of traffic, generated for each publish. On the other hand, publishing the
file only to some peers results in low traffic, while full-text searches either return only a small
percentage of results or consume a lot of time and traffic to finish.
So depending on the publish and search load of a network, the constraints of how many peers
to publish to and how many peers to send queries to have to be set. DHT Peer-to-Peer networks
already have the infrastructure for handling file hashes and locating sources. Publishing files
leads to proportional network load for both functions, publishing the file and publishing the
keywords, while searching for resources and full-text search are independent from each other.
Therefore no rule can be defined on how much traffic search and publish should take up pro-
portionally to each other if both full-text search and file sharing are implemented on the same
algorithms. If the sole purpose of the DHT network is to implement full-text search and key-

9

word publishing, it is best to use the functions intended for file sharing, and modify them for
the whole system if needed.

2.2.3 Querying

Queries are used to retrieve information from a dataset, by filtering out the data matching a
given query value. Full-text search uses a query string as filter value, which can contain one or
multiple keywords. The implementation decides how a query is processed. To perform a full
text query on an inverted index the query string has to be divided into its single keywords and
the result lists for each keyword have to be retrieved from the index and intersected.
DHT networks maintain instances of each index entry on multiple peers and most of them are
likely to be incomplete. Therefore retrieving multiple result lists for each keyword and merging
them before intersecting the result lists for the different keywords is needed to increase the
likelihood of a complete query result.
To send a query a lookup for responsible peers is invoked, which in turn updates the routing
table and provides the multiple contacts for each keyword. The lookup process is crucial to the
query time as it has several timeouts. The process waits for a defined time before returning the
peers’ contacts if less than the desired number has been found. A further timeout completely
aborts a lookup if it has found no contact at all. A basic query terminates after receiving all
replies for each keyword query, therefore the predictable execution time of the query is the time
when the last reply arrives, unless the algorithm repeatedly invokes the lookup process until the
desired number of contacts for each keyword is reached or a query timeout is triggered. The
first result can be expected when the last keyword query without a reply receives its first result
list. There is no simple way to predict at what point a result quality of 100% will be reached.

2.2.4 Optimizations

To avoid additional network load for multiple keywords KAD only queries the first keyword hash
together with a list of additional information, e.g. other keywords to filter the filename with,
file size, file type etc. The respective peer then performs a filter operation with the remaining
keywords and conditions before returning the final result. This implementation saves bandwidth
but reduces result quality – assuming the inverted indices are not complete. A query for each
keyword could be sent in order to increase result quality for the trade-off of increasing the traffic
again.
Another goal besides reducing the overall traffic needed for a query is to spread it amongst the
participating nodes. Recursive search does this by peers forwarding their intersected result list
together with the remaining keywords to the next set of responsible peers, and the final peer
returning the result to the querie’s origin.
Bloom filters can be used to further reduce traffic. The first step, like recursive search, populates
the m bit bloom filter with a set of k hash functions for each peer’s results, forwarding it again
with the remaining keywords. Instead of returning its result to the querie’s origin, the final peer
starts adding its results to a list which travels back the way it came while it is filled with the peers
results. While requiring more CPU time on the peers this algorithm reduces traffic significantly,
as in its first round only the Bloom filter of constant size is sent, while in the second round the

10

search results are added to, not removed from the result list. The only obvious trade-off, asides
the CPU time, is the increased minimum traffic for a query.
Asides from optimizing the search algorithm itself, network traffic can be compressed using
GZIP or similar performant compression algorithms. Once again CPU time is the trade-off, and
with growing network bandwidth even modern CPUs might come to a point where compression
shows no performance increase due to the network being faster than the compression/decom-
pression throughput of the system.

2.3 PeerfactSim

PeerfactSim [14] is a discrete event based Peer-to-Peer network simulator written in Java and
designed with the requirements for benchmarking platforms in mind. These requirements are
modularity, underlay network model, user behavior, resource model, service model, easy exper-
iment setup, scalability and documentation.

The simulator consists of five layers (see Table 2.1), with the first layer being the simulation
engine, followed by the network wrapper, the overlay layer, the application layer and the user
layer.

User
Application

Overlay
Network Wrapper
Simulation Engine

Table 2.1: PeerfactSim functionality layers

The network wrapper is a simplified combination of the underlying OSI layers and is able to
simulate message delivery times according to a latency model. It uses the geographical distance
between the start and end point as well as the available bandwidth to calculate the latency,
taking into account additional delay from processing through intermediate systems. It is able
to model network characteristics like retransmissions due to package loss, package damage or
out-of-order packages and congestion.

The overlay layer encapsulates details of overlay communication protocols and specific overlay
related algorithms and operations such as message routing and network maintenance. Peerfact-
Sim comes with a multitude of fully implemented, interchangeable overlay networks to choose
from such as Chord, CAN and Kademlia. Depending on the overlay network each peer can be
assigned different roles such as router, maintainer, indexer and cacher.

The application layer holds the code for the application running on each peer. PeerfactSim
comes with a simple file sharing application.

The user layer is responsible for creating nodes according to the configuration files, with all
crucial configurations being stored in a XML document. All nodes are located on an Euclidean
plane with their coordinates generated either randomly all over the plane or in predefined zones.
The nodes furthermore make use of a churn generator, deciding the user-controlled participation
dynamics in the network. The version used for this thesis came with two churn generators, the
uniform-random and the mixed log-normal churn generator.

11

PeerfactSim comes with multiple predefined benchmarking sets, usefull when evaluating over-
lay network implementations. The ideal set takes place after nodes have succesfully joined the
network, they run multiple operations and wait for the appropriate stabilization phase to finish
after each operation. In the scaling scenario groups of nodes join the network one group at a
time, publish their data and start random get(key) operations. This is done until all groups have
joined the network. In the unstable scenario a significant number of peers leaves the network in
a short time interval or performs a large number of overlay operations. In the failures scenario
peers randomly fail leading to message loss.

12

3 Implementation

This thesis’ implementation starts on top of the Kademlia implementation for PeerfactSim and
adds full-text search capability to the existing Kademlia overlay network providing parallel and
recursive search algorithms.
As a first step the SHA-1 algorithm is included for generating hashes used by the query and
publish algorithms. Furthermore the option to add multiple message handlers is added, and
a new Kademlia full-text search message type is defined and redirected exclusively to a new
full-text search message handler, while the original message handler receives all other message
types. This way Kademlia full-text search messages are excluded from the automated message
replication and re-send routines.
The static class DocumentProvider() with a list of strings representing filenames is used for pro-
viding publish and query data in case no data is given as parameter. When publishing get-
Publish() is called and returns one of a defined amount of variations for each filename, all its
keywords with three or more letters and a file hash generated from the filename using the SHA-
1 algorithm. The variations are created by adding a numeral at the end of the filename which is
not returned as a keyword but results in a different file hash. This step is later used to analyze
the result quality as every query should return the same number of variations.
Published data is marked by a counter, which in turn allows the getQuery() function to only
return keywords from filenames for which all variations have been published. A second counter
assures that the query data is provided in the same order it is stored in the list, and once all
published files have been queried it wraps around and returns keywords for the first filename.
Basically no further modifications on either the network layer or Kademlia are needed at this
point.

Listing 3.1: DocumentProvider()

1 s t a t i c c lass DocumentProvider (){
2

3 pub l i she s = 0;
4 quer i e s = 0;
5 v a r i a t i o n = 0;
6 documents = [’ f i lename1 ’ ,
7 ’ f i lename2 ’ ,
8 . . .
9 ’ f i lenameX ’] ;

10

11 public l i s t ge tPub l i sh (){
12 r e t u r n L i s t = [] ;
13 i f (pub l i she s < documents . length) ;
14 f i leName = documents [pub l i she s] + v a r i a t i o n ;
15 f i l eHash = SHA−1(fi leName) ;
16 keywords [] = fi lename . s p l i t (’ ’) ;
17 for (x = 0 to keywords . length){

13

18 i f (keywords [x] . length < 3 ||
19 keywords . coun tEn t r i e s (keywords [x]) > 1){
20 keywords [x] . remove ;
21 }
22 }
23 v a r i a t i o n++;
24 i f (v a r i a t i o n >= 10){
25 v a r i a t i o n = 0;
26 pub l i she s++;
27 }
28 r e t u r n L i s t = [fileName ,
29 f i l eHash ,
30 keywords] ;
31 }
32 return r e t u r n L i s t ;
33 }
34

35 public l i s t getQuery (){
36 keywords [] = documents [quer i e s] . s p l i t (’ ’) ;
37 for (x = 0 to keywords . length){
38 i f (keywords [x] . length < 3 ||
39 keywords . coun tEn t r i e s (keywords [x]) > 1){
40 keywords [x] . remove ;
41 }
42 }
43 quer i e s++;
44 i f (quer i e s > pub l i shes) quer i e s = 0;
45 return keywords ;
46 }
47

48 }

3.1 Publish

The publish algorithm is designed to process one single keyword with its respective file hash at
a time, though it can be called with a list of keyword and file hash pairs. It makes use of a queue
in form of the PublishQueue() class and a periodical processing function processQueue(). It ex-
actly limits the number of puplishes according to the desired publish limit provided through the
simulation setup. On execution without parameters the publish data is obtained from the Doc-
umentProvider() class. Each file hash is stored into the queue with all of its keywords through
the queue’s add() function and if it isn’t already running processQueue() is activated. The pro-
cessing function periodically extracts lists of all unfinished publish commands from the queue
by calling the get() function. The queue stores and returns the publishes in the form of pairs
of one filehash and one keyword. The processQueue() function processes the lists by sending

14

each publish through an ID lookup to its respective peers. This is done by using the preexisting
Kademlia send() function. On receiving the publish message an automated reply is sent directly
through the network layer with the send() function and the received data is stored into an in-
verted index each node maintains. When a certain amount of publish replies is received and
stored into the queue using the update() function the publish terminates successfully. Once all
publishes have terminated the query returns an empty list which in turn stops the processing
function’s periodical execution until it is triggered again by a new publish.
In common DHT networks all files are republished hourly to achieve high availability. With
simulation time in mind this functionality is not implemented but instead the publish command
is executed with churn disabled, guaranteeing an optimal replication of the published data.
Furthermore the simulated realtime only covers four hours with churn disabled for the first
hour. The sources deterioration in that time period is negligible thus making repeated publishing
unnecessary.
The following pseudo-code provides a brief insight into the publishing algorithm and its com-
ponents.

Listing 3.2: Publish – message handler

1 public void messageHandler (IncomingEvent message){
2 i f (message . type==publ i sh){
3 l o ca l Index . s toreSource (message . keywordHash , message . f i l eHash) ;
4 NetLayer . send (message . sender ,
5 message . content ,
6 type=publ i shReply) ;
7 } else i f (message . type==publ i shReply){
8 publishQueue . update (message) ;
9 }

10 }

Listing 3.3: Publish – publish call

1 public void pub l i sh (S t r i ng p u b l i s h S t r i n g){
2 i f (DocumentProvider . pub l i she s < Setup . pub l i shL im i t){
3 i f (p u b l i s h S t r i n g == ’ ’){
4 publishQueue . add(DocumentProvider . ge tPub l i sh ()) ;
5 } else {
6 publishQueue . add(p u b l i s h S t r i n g) ;
7 }
8 i f (! p e r i o d i c . i s A c t i v e){
9 p e r i o d i c () ;

10 }
11 }
12 }
13

14 public void processQueue (){
15 p u b l i s h L i s t [] = publishQueue . ge tPub l i she s () ;
16 i f (! p u b l i s h L i s t . isEmpty){
17 for (x = 0 to p u b l i s h L i s t . l ength){

15

18 Kademlia . send (p u b l i s h L i s t [x]) ;
19 }
20 Simulator . schedule (p e r i o d i c () , 1000ms) ;
21 }
22 }

Listing 3.4: Kademlia send()

1 public void send (S t r ing pub l i sh){
2 nodes [] = over lay . lookup (pub l i sh . keywordHash) ;
3 for (x = 0 to nodes . length){
4 over lay . send (nodes [x] ,
5 pub l i sh . keywordHash ,
6 pub l i sh . sourceHash ,
7 type=pub l i sh) ;
8 }
9 }

Listing 3.5: Publish – publish queue

1 c lass PublishQueue (){
2 publ i sh Index = new Array [f i l eHash ,
3 keywordHashes [] ,
4 con tac t s [] []] ;
5

6 public void add(S t r i ng pub l i sh){
7 pub l i she s [] = s p l i t (pub l i sh . keywords) ;
8 for (x = 0 to pub l i sh . keywords . count){
9 i f (! publ i sh Index . e x i s t s (pub l i sh . f i l eHash , pub l i she s [x])){

10 publ i sh Index . add(pub l i sh . f i l eHash , pub l i she s [x]) ;
11 }
12 }
13 }
14

15 public void update (IncomingEvent message){
16 publ i sh Index . addPeer (message . f i l eHash ,
17 message . keyword ,
18 message . sender) ;
19 }
20

21 public l i s t get (){
22 p u b l i s h L i s t = [] ;
23 for (x = 0 to publ i sh Index . count){
24 i f (! publ i sh Index . pub l i sh (x) . minPeersPublishedTo){
25 p u b l i s h L i s t . add(publ i sh Index . pub l i sh (x) . publ i shData) ;
26 }
27 }

16

28 return p u b l i s h L i s t ;
29 }
30 }

3.2 Search

The search algorithms are designed to use a list of keywords. If no list is given the Document-
Provider() is invoked to obtain one. These keywords are then stored into a queue and retrieved
as individual single word queries by a periodic processing function.
The number of desired queries is forced by comparing the according value from the simulation
setup file to the one from the DocumentProvider() class. Furthermore a query is only performed
if the querying node is connected to the network which in turn means the execution of a query
is aborted if the node itself is affected by churn and therefore not connected to the network.
This way the queries run on already churned nodes are ignored. The cases of a node loosing
connection during a query, or a queried node being affected by churn are not influenced by this
method.

3.2.1 Parallel Search with Local Result Intersection

The main functionality of the parallel search is to request the result lists for each keyword at the
same time. The lists are then intersected so only results returned for every keyword end up in
the final result.
For implementing a parallel search algorithm queries are separated into sub-queries of single
keywords when added to the queue with the add() function. The original query string with
all its keywords is stored as reference. When getQueries() is called by the periodic processing
function the queue returns a list of all sub-queries’ hashes with less than n replies whose query
is still active. A query is determined inactive when a certain time has passed, a result limit has
been reached or all sub-queries have received as many replies as set in the simulation setup.
Each sub-query hash in that list is then sent to its n respective peers using the Kademlia send()
operation. On receiving a query a reply is sent through the network layer containing the cor-
responding data from the local inverse index. If no data for that query is found then an empty
result is returned.
The reply is forwarded to the query queue, which in turn stores the new sources for each sub-
query. When asked for queries the queue checks whether one of the conditions for terminating
each query has been reached. Queries are not actively terminated, they are simply not included
in the return statement of getQuery() anymore.
The following pseudocode provides a brief insight into the parallel query algorithm and its
components.

Listing 3.6: Parallel search – message handler

1 public void messageHandler (IncomingEvent message){
2 i f (message . type==query){
3 NetLayer . send (message . sender ,
4 message . query ,

17

5 l o ca l Index . ge tRe su l t s (message . query) ,
6 type=rep ly) ;
7 } else i f (message . type==rep ly){
8 queryQueue . update (message) ;
9 }

10 }

Listing 3.7: Parallel search – query call

1 public void query (S t r i ng query){
2 i f (DocumentProvider . quer i e s < Setup . queryLimit){
3 i f (query == ’ ’){
4 queryQueue . add(DocumentProvider . getQuery ()) ;
5 } else {
6 queryQueue . add(query) ;
7 }
8 i f (! p e r i o d i c . i s A c t i v e){
9 p e r i o d i c () ;

10 }
11 }
12 }
13

14 public void p e r i o d i c (){
15 q u e r y L i s t [] = queryQueue . getQuer ies () ;
16 i f (! q u e r y L i s t . isEmpty){
17 for (x = 0 to q u e r yL i s t . l ength){
18 Kademlia . send (qu e r y L i s t [x]) ;
19 }
20 Simulator . schedule (p e r i o d i c () , 1000ms) ;
21 }
22 }
23 }

Listing 3.8: Parallel search – query queue

1 c lass QueryQueue (){
2 public void add(S t r i ng query){
3 subQueries [] = s p l i t (query) ;
4 queryIndex . add(query , subQueries) ;
5 }
6

7 public void update (IncomingEvent message){
8 queryIndex . subQueryUpdate (message . query , message . r e s u l t s) ;
9 }

10

11 public l i s t getQuer ies (){
12 q u e r y L i s t = [] ;

18

13 for (x = 0 to queryIndex . count){
14 i f (! queryIndex . query (x) . des i redRepl iesPerSubQuery &&
15 ! queryIndex . query (x) . runtimeExceeded &&
16 ! queryIndex . query (x) . re su l tL imi tReached){
17 q u e r y L i s t . add(queryIndex . query (x) . getOpenSubQueries) ;
18 }
19 }
20 return q u e r y L i s t ;
21 }
22 }

3.2.2 Recursive Search with Remote Result Intersection

Traditional recursive search sends out its query string to the node responsible for the first key-
word. This node then adds its results and passes it on to the node responsible for the next
keyword which intersects the attached result list with its own. This goes on until the last key-
word is reached. The nodes responsible for the last keyword then return their intersected result
lists to the querying node where they are added to the final result list. As a slight optimization
the keywords can be ordered ascending according to the responsible node’s result list sizes for
the keywords. This safes some traffic as the smallest result list gets passed on and is possibly
even reduced through intersection.
As Kademlia is basically an iterative network the recursive search cannot be implemented
straight forward. It would be possible to add the functionality to send out recursive queries
for an incoming query, but with churn, lookup timeouts and querying the n closest nodes this
would result in a rather slow algorithm, prone to returning empty results due to churn some-
where along the way or flooding the network with an exponential amount of messages due to
the n replication. Therefore this algorithm is implemented in an iterative way.
The algorithm can be separated into four phases (see Figure 3.1). In phase 0 all sub-queries
are retreived from the queue via the getQueries() function and sent out simultaneously to their
n respective peers using the Kademlia send() operation. Instead of returning a result list the
reply to a query simply includes the number of results the respective peer’s local index holds for
that hash value. From this point forward all communication is done through the network layer,
therefore the only considerable delay will come from the initial ID lookups.
With a certain desired amount of replies per sub-query or with reaching a timeout and at least a
minimal amount of replies per sub-query the update() function returns the boolean value true.
As a result the algorithm enters phase 1 where the sub-queries are ordered in ascending order
by the amount of results the respective peers hold, and the query is no longer only processed
through a timed event but it is also triggered for each incoming event through the return value
of the update() function. The main step of this phase is to retrieve the first sub-query from the
queue with the getIPQueries() function and request all sources for it through the network send()
operation.
Receiving the sources for the first sub-query the algorithm now enters phase 2, in which all
following sub-queries will be sent out with a list of their previous sub-querie’s results if there
are any. Each incoming reply therefore triggers the sending of the sub-queries following this

19

reply’s respective sub-query, with exception for those replies belonging to the last sub-query. On
receiving a query the list of results sent alongside it is intersected with the local inverted index
and a reply with the list of the remaining file hashes is sent.
When a time limit or a results limit has been reached or every node found in phase 0 has sent a
reply the algorithm enters phase 3 for the corresponding query which results in this query not
being processed anymore and therefore terminates it.
The following pseudocode provides a brief insight into the iterative implementation of the re-
cursive query algorithm and its components.

Listing 3.9: Recursive search – message handler

1 public void messageHandler (IncomingEvent message){
2 i f (message . type==queryCount){
3 Network . send (message . sender ,
4 message . query ,
5 l o ca l Index . ge tRe su l t s (message . query) . length ,
6 type=rep ly) ;
7 } else i f (message . type==q u e r y F i r s t){
8 Network . send (message . sender ,
9 message . query ,

10 l o ca l Index . ge tRe su l t s (message . query) ,
11 type=rep ly) ;
12 } else i f (message . type==query){
13 Network . send (message . sender ,
14 message . query ,
15 i n t e r s e c t (l o ca l Index . ge tRe su l t s (message . query) ,
16 message . sources) ,
17 type=rep ly) ;
18 } else i f (message . type==rep ly){
19 i f (queryQueue . update (message)){
20 p e r i o d i c () ;
21 }
22 }
23 }

Listing 3.10: Recursive search – query call

1 public void query (S t r i ng query){
2 queryQueue . add(query) ;
3 i f (! p e r i o d i c . i s A c t i v e){
4 p e r i o d i c () ;
5 }
6 }
7

8 public void p e r i o d i c (){
9 q u e r y L i s t [] = queryQueue . getQuer ies () ;

10 q u e r y I p L i s t [] = queryQueue . ge t IpQuer ie s () ;
11 i f (! q u e r y L i s t . isEmpty){

20

12 for (x = 0 to q u e r yL i s t . l ength){
13 Kademlia . send (qu e r y L i s t [x]) ;
14 }
15 }
16 i f (! q u e r y I p L i s t . isEmpty) {
17 q u e r y L i s t [] = queryQueue . ge t IpQuer ie s () ;
18 i f (! qu e r y L i s t . isEmpty){
19 for (x = 0 to q u e r yL i s t . l ength){
20 Network . send (q u e ry L i s t [x] . IP ,
21 q u e r y L i s t [x] . query ,
22 q u e r y L i s t [x] . sources ,
23 q u e r y L i s t [x] . type) ;
24 }
25 }
26 }
27 i f ((! q ue r y L i s t . isEmpty ||
28 ! q u e r y I p L i s t . isEmpty) &&
29 p e r i o d i c . i sNotYetScheduled){
30 Simulator . schedule (p e r i o d i c () , 1000ms) ;
31 }
32 }

Listing 3.11: Recursive search – query queue

1 c lass QueryQueue (){
2 public void add(S t r i ng query){
3 subQueries [] = s p l i t (query) ;
4 i f (! queryIndex . e x i s t s (query)){
5 queryIndex . add(query , subQueries) ;
6 }
7 }
8

9 public boolean update (IncomingEvent message){
10 i f (message . sources . i s N u l l &&
11 ! message . sourcesCount . i s N u l l){
12 queryIndex . subQueryUpdate (message . query ,
13 message . sender ,
14 message . sourcesCount ,
15 type=contac t) ;
16 } i f (! message . sourcs . i s N u l l){
17 queryIndex . subQueryUpdate (message . query ,
18 message . sender ,
19 message . sources ,
20 type=sources) ;
21 }
22 x = queryIndex . queryContains (message . query) . index ;
23 i f (((queryIndex . query (x) . enoughContacts &&

21

24 queryIndex . query (x) . t imeLimitReached) ||
25 queryIndex . query (x) . des i r edContac t s) &&
26 queryIndex . query (x) . phase = 0){
27 queryIndex . query (x) . phase = 1;
28 queryIndex . query (x) . s o r t () ;
29 }
30 return (queryIndex . query (x) . phase > 0) ;
31 }
32

33 public l i s t getQuer ies (){
34 q u e r y L i s t = [] ;
35 for (x = 0 to queryIndex . count){
36 i f (queryIndex . get (x) . phase == 0){
37 q u e r y L i s t . add(queryIndex . getOpenSubQueries) ;
38 }
39 }
40 return q u e r y L i s t ;
41 }
42

43 public l i s t ge t IPQuer ie s (){
44 q u e r y L i s t = [] ;
45 for (x = 0 to queryIndex . count){
46 i f (queryIndex . query (x) . runtime > Setup . queryTimeLimit ||
47 queryIndex . query (x) . r e s u l t s > Setup . queryResu l tL imi t ||
48 queryIndex . query (x) . a l lNodesRepl ied){
49 queryIndex . get (x) . phase = 3;
50 } else i f (queryIndex . get (x) . phase == 1){
51 for (z = 0 to queryIndex . query (x) . subQuery (0) . contactsCount){
52 q u e r y L i s t . add(queryIndex . query (x) . subQuery (0) . con tac t s (z) ,
53 queryIndex . query (x) . subQuery (0) . query ,
54 type=q u e r y F i r s t) ;
55 }
56 queryIndex . query (x) . phase = 2;
57 } else i f (queryIndex . query (x) . phase == 2){
58 for (y = 1 to queryIndex . query (x) . subQuery . length){
59 i f (queryIndex . query (x) . subQuery (y−1). sources . length > 0 &&
60 ! queryIndex . query (x) . subQuery (y) . con ta c t s . a l lQuer i ed){
61 for (z = 0 to queryIndex . query (x) . subQuery (y) . con tac t s .
62 l ength){
63 q u e r y L i s t . add(queryIndex . query (x) . subQuery (y) .
64 con tac t s (z)) ;
65 }
66 }
67 }
68 }
69 }

22

70 }
71 return q u e r y L i s t ;
72 }

Phase 1

•Sort queries
•Send first query
•Receive result lists

Phase 0

•Query for result list sizes

•Receive result list sizes

Phase 3

•provide last queries
results as final results

Phase 2

•Send all active queries
•Provide result lists
•Receive result lists

Desired contacts per query

TimeLimitReached && enoughContacts

Query time limit reached

Result limit reached

All nodes replied
R

es
ul

t f
or

 fi
rs

t q
ue

ry
 a

rr
iv

ed

timer

timer,
event

Figure 3.1: Recursive search – phases

23

4 Analysis Framework

The analysis framework consists of two parts, one being the simulator configuration and the
other one the actual measurement of certain values.
To provide realistic measurements the configuration will be set to represent real world Kademlia
networks as close as possible. While this way most settings are predetermined they will still be
described in the following section to provide a deeper understanding of what they do and the
effect changing them would have on the network.

4.1 Simulator Configuration

The course of the simulation itself during the simulated time period is controlled through a set
of files consisting of kadFTS.properties, kadFTS.XML and kadFTS-actions.dat. Furthermore the
used full-text search algorithm is configured through a separate setup file conveniently placed
in a static Setup() class. This is done to keep this thesis work as far separated as possible from
the original simulator source code.
The XML file contains the settings for the size of the network, the simulated time period and
the simulated real times at which churn is enabled and measurement starts while the actions
file calls node functions for subgroups at a defined time. The setup class for the full-text search
algorithms determines the runtime of each query, a results limit, a query timeout, the time
and contact limits for the recursive search algorithm, the amount of variations per file and the
interval at which each nodes queues are processed.
The simulation can be divided into several chronological steps, with the first being the connec-
tion of the clients. This takes place in the first 30 minutes of simulated real time.
The next step, publishing of the full-text search data, takes place in the following 30 minutes.
At this point, 60 minutes into the simulated real time, churn is enabled for the whole network,
and the measurement is started.
The size of the network will be set to different values for multiple simulation runs, to provide a
view on the influence the network size has on the performance and an outlook on the scalability
of the full-text search algorithms.
The most important part of this simulation, running queries, is performed from 80 minutes on
with a rate of 1 query per node per minute, up until the desired total amount of queries has
been finished. This rate is controlled using the network size and setting the time-range in the
actions.dat accordingly. While in file sharing networks query response times of several seconds
do not pose a problem, studies show [15] that most people will determine a regular web search
to have returned no results after just under 6 seconds of no results coming in.
The total runtime of the search may take longer, and while file sharing networks run their
queries for 45 seconds no user would wait that long for a web search. At this point the afore-
mentioned 6 seconds would be a good time limit for the total runtime of a query, but in real
life considerably longer response times are to be expected in the Kademlia network. Therefore
a query runtime limit of 25 seconds is chosen.

24

The rate at which nodes repeat ID lookups for queries is set to one second. This increases the
queries performance in case the already running lookups are steering into a timeout. According
to later simulations this happens with a probability of 98% in at least one sub-query for every
query performed, thus increasing the whole result time. Sending multiple lookups ensures
that non responsive peers are dropped from the routing table according to the overlay network
settings, which using this papers simulation settings is long before the upper tolerable timelimit
of 6 seconds has been reached.
The iterative implementation of the recursive search algorithm needs two additional constraints.
The first one is a timeout after which phase 1 of the query algorithm will be entered in case
at least one results bearing contact per sub-query has been found. This timeout is however
rendered obsolete if the query algorithms desired contacts per sub-query to enter phase 1 is set
to 1. This can in theory dramatically reduce the result quality, but after some testing it turned
out to work well in combination with requesting the full result list for new contacts belonging to
the first sub-query. Therefore the only important value for the recursive search is desiredContacts
located in the Setup() class.
The following tables provide a brief overview on the aforementioned files’ settings.

size 1,000 peers
2,500 peers
5,000 peers

10,000 peers
20,000 peers

churnStart 60 minutes
meanSessionLength 60 minutes
measurementStart 60 minutes
finishTime 240 minutes

Table 4.1: kadFTS.XML

SimulatorQueryLimit 1,000 queries
fileVariations 10
resultsMax 300 results
queryRuntime 25 seconds
queueTimer 1 seconds
desiredContacts 1

Table 4.2: Setup() class

0m-29m connect
30m-59m publish
80m query

Table 4.3: kadFTS-actions.dat

25

4.1.1 Physical Network Layer

The PeerfactSim Peer-to-Peer network simulator already implements a regular UDP/IP network
protocol and does not allow direct manipulation of its properties. As any changes in the IP
protocol would result in an incompatibility with existing UDP/IP networks they are of no interest
to this simulation.

The IP network itself is simulated as a worldwide network. PeerfactSim takes into account the
delay between subnetworks according to their geometric distance. It is possible to customize
each subnetwork’s node count thus allowing to simulate denser regions alongside regions with
less infrastructure. The predefined network clusters in PeerfactSim are already very close to
current real world network density charts [16] and will therefore not be modified.

North America 35.4%
East Asia 30.4%
Japan 15.6%
Europe 11.6%
Oceania 3.2%
Latin America 1.6%
Middle East 0.8%
Balkans 0.6%
South East Asia 0.4%
Africa 0.4%

Table 4.4: Network population

As most private Internet connections use asymmetric connections this simulation will do so as
well. At the time of this thesis commonly available private Internet connections in Germany
range roughly between 2,000 and 16,000 kilobits per second download and 200 and 1,000 kilo-
bits per second upload bandwidth. Other countries may have slower connections available and
widely used, so even if Kademlia has proven to be quite resilient against local bottlenecks by
preferring the best performing known nodes in general a realistic connection speed has to in-
clude slower connections as well. To date the global average connection speed is approximately
1.7 Mbps [17]. Therefore and because of the fact that PeerfactSim only uses one bandwidth
setting for all nodes a download bandwidth of 200 kilobytes per second paired with an upload
bandwidth of 100 kilobytes per second is chosen and should provide a realistic environment for
the simulation.

Churn is another important parameter for this simulation. The PeerfactSim version used in
this thesis allows to choose between two churn models, the static and the exponential churn
model. While static churn is easy to simulate, affecting whole subgroups of the network and
disconnecting them from the network, its behavior is far from realistic. The exponential churn
model affects individual nodes, making it the better choice for this simulation. PeerfactSim
allows to setup churn through the mean session length of participating nodes, which will be set
to 60 minutes.

26

4.1.2 Overlay Network Layer

The overlay network layer consists of three fundamental parts, its ID space, the overlay structure
and the lookup algorithm making use of it.
The length of the n-bit identifier used in overlay networks is crucial to their usage, as it deter-
mines the upper limit of nodes in a network. Furthermore hashes, used to publish and query
data, have to be of the same length. While on IPv4 networks a 32 bit ID would be enough to
cover the whole IP range the needed 32 bit hash algorithm would be too prone to collisions. Yet
the ability to cover the IP range wouldn’t be enough, as with a dense population of the network
this would consume a considerable amount of time and traffic just to find an unused ID, always
risking that it is not unused but the current holder is offline at the time being. To allow as many
nodes as IPv6 can manage an 128 bit identifier would be enough, and collisions in a 128 bit
hash algorithm are already acceptably low. Nonetheless real world Kademlia applications use a
160 bit ID space, to reduce aforementioned time and traffic for finding a free ID. At an ID length
of 32 bit more then the IP address space it can even be safely assumed that no lookup for a free
ID is needed at all and it can simply be generated through hashing some system values. There
is still the possibility to reassign a new ID if an ID collision occurs. As the 160 bit ID used in
Kademlia works very well in real world applications it will be used for this simulation as well.
The virtual structure of the Kademlia overlay network is a binary tree with an order of 2. The
hierarchy depth of the tree is 1, meaning that every node only knows his direct children. In-
creasing the hierarchy depth of the tree would have benefits for lookup operations because of
the additional known nodes, but it would require considerably more maintenance as every node
would need to keep updated on all of his children’s children down to the level of hierarchy. This
structure is the core of real world Kademlia applications and will therefore not be changed.
The lookup operation is set to locate the k = 10 nearest neighbors to a given 160 bit key. Ac-
cordingly the routing table stores 10 nodes per bucket with a replacement cache of an additional
10 nodes. Increasing k will result in increased traffic and memory consumption, while a lower
k might reduce the result quality. Again the given value has proven itself as a good trade-off
between traffic and result quality in real world applications and will be used in this simulation.
A stale counter is used to filter out non responsive nodes from the routing table after the second
time of failing to respond. In this case the non responsive node will be replaced by the nearest
node from the replacement cache. Lowering the stale counter to 1 would have the effect that a
node experiencing churn would drop his entire routing table, putting him into a situation where
it is hard to rejoin the network. Increasing it on the other hand would lead to more lookup
timeouts. A stale counter of 2 has proven to work quite well, although real world Kademlia
applications tend to drop their entire routing table when disconnected from the network for
too long. As the routing table buckets are refreshed with an interval of 1 hour the offline time
after which the entire routing table is empty can be determined to 2 hours for this setup, unless
the client application detects its offline state and inhibits refreshing until it has rejoined the
network. This could not be avoided by increasing the stale counter, only the necessary offline
time would increase.
To avoid a contactless state at the beginning of the simulation, which would require the imple-
mentation of a bootstrap algorithm, each node joins the network with 100 nodes already in the
routing table. This number is high enough to ensure every node manages to join the network,
and by far lower than the number of contacts in the routing table after the first 60 minutes

27

of simulated realtime. It therefore can be safely assumed that it has no effect on the full-text
search algorithms.
After retrieving the 10 closest nodes from the routing table the lookup operation contacts all of
them to make sure they are alive. This is done for 3 nodes at a time, with a lookup timeout of 2
seconds and a timeout of 45 seconds for the entire lookup operation. Again the predefined val-
ues have proven to work well and are used in real world Kademlia applications where reducing
the lookup timeout has a negative influence on the result quality, while a higher timeout only
slows down the query algorithms. Due to the relatively small simulated network sizes used for
this thesis simulations and the fact that the network is not used by any other application even a
lookup timeout of 1 second would work well (see Figure 4.1 – simulated on 1,000 nodes with
non mentioned settings according to this chapter), though it would not be a good representation
of real world DHT networks.

Figure 4.1: Overlay network layer – lookup timeout

The following table provides a brief overview on the overlay network settings used for this
thesis.

28

ID_Length 160 bit
Btree 2
K 10 contacts
Replacement_Cache_Size 10 contacts
Stale_Counter 2
Refresh_Interval 1 hour
Hierarchy_Depth 1
Hierarchy_Btree 2
Initial_Routing_Table_Contacts 100
Alpha 3 seconds
Lookup_Message_Timeout 2 seconds
Lookup_Operation_Timeout 45 seconds

Table 4.5: Overlay network configuration

4.2 Measurement

The main attributes to be measured are the query response times and result quality. It is impor-
tant to measure at which point the first results come in to determine if the algorithms would
still be applicable for a regular full-text search. The result quality of each single query as well as
the average result quality are important to determine the usefulness of Peer-to-Peer searches for
different applications. While low result quality is acceptable for full-text search on file sharing
networks other applications like web search require a higher – if not 100% – result quality.

Another important measurement value is the generated network traffic. This determines whether
an algorithm would be fit for different kinds of applications. While on server based web search
the sole limit is the server with usually a quite low amount of traffic per query, on Peer-to-peer
networks the traffic is shared among the peers and queries take up considerably more traffic
as multiple peers have to be contacted. From the traffic the overhead can be extracted. This
again is an interesting value to measure as it gives an insight on the practicality of the used
Peer-to-Peer search algorithms and the overlay network itself.

The network load during query operations is another important factor as it determines the
maximum amount of peers that can send a query during a period of time before the networks
performance collapses. For this purpose various simulation runs with different query rates will
be evaluated. The main simulations will then be run with a non problematic query rate to rule
out network congestion and focus on the algorithms performance and practicallity.

The PeerfactSim Kademlia package comes with a variety of predefined measurement analyzers.
The one interesting for this simulation is the hourly overlay traffic analyzer.

In addition a set of new measurement analyzers is implemented for the query response time
until the first reply arrives, until a result quality of 100% has been reached and until all K nodes
per sub-query have sent a reply. Furthermore the in- and outgoing traffic from the view of the
application for each query is stored and an average is calculated at the end of the simulation.
The IP traffic and the overlay network traffic are measured separately and therefore can be used
to calculate the generated overhead.

29

Multiple simulations will be run for different network sizes to gain an insight on scalability and
an estimate of how larger networks would affect the simulation.

4.3 Shared Data

The data shared into the network, for the purpose of full text search, consists of keyword hash
and file hash sets. To simplify the process simple strings are used as files (see Table 4.6). The
keywords are the single words in that string, with three or more letters, and the file hash is
generated by hashing the whole string. For each keyword, a keyword hash and the file hash are
sent to the peers responsible for the keyword hash, and stored into the inverted indices of those
peers.
To ensure an exact upper limit for the results of full text search queries, each string is used 10
times, with a numeral added at the end. This numeral is not extracted as a keyword, therefore
all 10 files are published with the same keywords. However, they produce different file hashes,
due to the variations in the string, which results in 10 different files being found by the queries.
The following tables show the list of strings used for the DocumentProvider() and the result list
sizes for single keyword queries with 10 variations of each file where one result takes up 160
bit.

30

1922 - Nosferatu 1987 - Robocop
1940 - Pinocchio 1987 - The Running Man
1942 - Bambi 1988 - A Fish Called Wanda
1946 - Song of the South 1988 - A Nightmare On Elm Street 4 - The Dream Master
1960 - The Little Shop Of Horrors 1988 - Beetlejuice - CD1
1966 - Batman 1988 - Beetlejuice - CD2
1970 - Aristocats 1988 - Die Hard
1971 - A Clockwork Orange - CD1 1988 - Halloween 4 - The Return Of Michael Myers
1971 - A Clockwork Orange - CD2 1988 - Hellraiser 2 - Hellbound
1972 - Fist Of Fury 1988 - The Blob
1973 - Enter The Dragon 1988 - Who Framed roger Rabbit
1977 - Pete’s Dragon 1989 - A Nightmare On Elm Street 5 - The Dream Child
1977 - Star Wars Episode IV - A New Hope 1989 - Back To The Future II
1978 - Game Of Death 1989 - Batman - CD1
1978 - Halloween 1989 - Batman - CD2
1979 - Alien 1989 - Halloween 5
1979 - Stephen King - Salems Lot 1989 - Indiana Jones And The Last Crusade
1980 - Friday the 13th 1989 - Pet Sematary
1980 - Star Wars Episode V - The Empire Strikes Back 1989 - UHF
1981 - Game Of Death II - CD1 1990 - Back To The Future III
1981 - Game Of Death II - CD2 1990 - Die Hard 2 - Die Harder
1981 - Halloween 2 1990 - Gremlins 2 - The New Batch
1981 - Heavy Metal 1990 - Hardware
1981 - Indiana Jones And The Raiders Of The Lost Ark 1990 - Robocop 2
1982 - Halloween 3 - Season of the Witch 1991 - A Nightmare On Elm Street 6 - Freddys Dead - The Final Nightmare
1982 - The Thing 1991 - Highlander 2 - The Quickening
1983 - Star Wars Episode VI - Return of the Jedi 1991 - Hook
1984 - A Nightmare On Elm Street 1991 - Terminator 2 - CD1
1984 - Beverley Hills Cop 1991 - Terminator 2 - CD2
1984 - Gremlins 1992 - Aladdin
1984 - Purple Rain 1992 - Alien 3
1984 - Revenge of the Nerds 1992 - Batman Returns
1984 - Terminator 1992 - Dead Alive
1985 - A Nightmare On Elm Street 2 - Freddys Revenge 1992 - Hellraiser 3 - Hell On Earth
1985 - Back To The Future 1992 - Honey I Blew Up The Kid
1985 - Legend 1992 - Stephen King - The Lawnmower Man
1985 - Lifeforce 1993 - Jurassic Park
1986 - Aliens 1993 - Nightmare Before Christmas
1986 - Big Trouble In Little China 1993 - Robin Hood - Men In Tights
1986 - Ferris Bueller’s Day Off 1993 - Robocop 3
1986 - Highlander 1993 - Twin Warriors
1986 - Jumpin Jack Flash 1994 - A Nightmare On Elm Street 7 - New Nightmare
1986 - Little Shop Of Horrors 1994 - Ace Ventura Pet Detective
1986 - The Fly 1994 - Beverley Hills Cop III
1987 - A Nightmare On Elm Street 3 - Dream Warriors 1994 - Highlander 3 - The Final Dimension
1987 - Beverley Hills Cop II 1994 - The Lion King
1987 - Hellraiser 1 1994 - Tiny Toons - How I Spent My Vacation
1987 - Honey I Shrunk The Kids 1995 - Ace Ventura - When Nature Calls
1987 - Lethal Weapon 1995 - Bad Boys
1987 - Revenge of the Nerds 2 - Nerds In Paradise 1995 - Batman Forever

Table 4.6: DocumentProvider() – strings

31

230 - The 20 - Pet 10 - Sematary 10 - Fury
90 - 1988 20 - Orange 10 - Season 10 - Friday
80 - Nightmare 20 - Nerds 10 - Salems 10 - Framed
80 - 1989 20 - Man 10 - Running 10 - Forever
80 - 1987 20 - Jones 10 - Robin 10 - Fly
70 - Street 20 - Indiana 10 - Returns 10 - Flash
70 - Elm 20 - III 10 - Rain 10 - Fist
70 - 1992 20 - Horrors 10 - Raiders 10 - Fish
70 - 1986 20 - Honey 10 - Rabbit 10 - Ferris
60 - the 20 - Hard 10 - Quickening 10 - Enter
60 - 1994 20 - Gremlins 10 - Purple 10 - Empire
60 - 1984 20 - Freddys 10 - Pinocchio 10 - Earth
50 - Halloween 20 - Final 10 - Pete’s 10 - Dimension
50 - CD2 20 - Dragon 10 - Park 10 - Detective
50 - CD1 20 - Die 10 - Paradise 10 - Day
50 - Batman 20 - Dead 10 - Off 10 - Crusade
50 - 1993 20 - Clockwork 10 - Nosferatu 10 - Christmas
50 - 1991 20 - Beetlejuice 10 - Nature 10 - China
50 - 1990 20 - And 10 - Myers 10 - Child
50 - 1981 20 - Alien 10 - Michael 10 - Calls
40 - Back 20 - Ace 10 - Metal 10 - Called
40 - 1985 20 - 1982 10 - Men 10 - Bueller’s
30 - Wars 20 - 1980 10 - Master 10 - Boys
30 - Terminator 20 - 1979 10 - Lot 10 - Blob
30 - Star 20 - 1978 10 - Lost 10 - Blew
30 - Robocop 20 - 1977 10 - Lion 10 - Big
30 - Revenge 20 - 1971 10 - Lifeforce 10 - Before
30 - New 10 - roger 10 - Lethal 10 - Batch
30 - Little 10 - Witch 10 - Legend 10 - Bambi
30 - King 10 - Who 10 - Lawnmower 10 - Bad
30 - Hills 10 - When 10 - Last 10 - Ark
30 - Highlander 10 - Weapon 10 - Kids 10 - Aristocats
30 - Hellraiser 10 - Wanda 10 - Kid 10 - Alive
30 - Game 10 - Vacation 10 - Jurassic 10 - Aliens
30 - Future 10 - UHF 10 - Jumpin 10 - Aladdin
30 - Episode 10 - Twin 10 - Jedi 10 - 1983
30 - Dream 10 - Trouble 10 - Jack 10 - 1973
30 - Death 10 - Toons 10 - How 10 - 1972
30 - Cop 10 - Tiny 10 - Hope 10 - 1970
30 - Beverley 10 - Tights 10 - Hook 10 - 1966
30 - 1995 10 - Thing 10 - Hood 10 - 1960
20 - Warriors 10 - Strikes 10 - Hellbound 10 - 1946
20 - Ventura 10 - Spent 10 - Hell 10 - 1942
20 - Stephen 10 - South 10 - Heavy 10 - 1940
20 - Shop 10 - Song 10 - Hardware 10 - 1922
20 - Return 10 - Shrunk 10 - Harder 10 - 13th

Table 4.7: DocumentProvider() – result lists

32

5 Measurements and Analysis

The PeerfactSim Peer-to-Peer network simulator uses a seed value with which its function for
generating random values is initialized. This way all simulations, while using a certain degree
of randomness are reconstructible. It is not possible however to provide all simulations with
the same random pattern as besides the seed value it also depends on other simulation settings
and values. To obtain comparable results multiple simulations with differing seed values are
performed for each desired setting and an average is calculated.
This chapters results are obtained by calculating the average of five simulations with seed values
ranging from 0 to 4. The version of PeerfactSim used for this thesis did not provide the possibility
to run simulations with much more than 20,000 nodes. It also required disproportinal amounts
of time if the number of published documents was increased noticeably. The simulation runtimes
using the settings from chapter 3 were within an acceptable range on an Intel Core2 Quad with
12 MB cache running at 4 GHz and on 8 GB RAM (see Figure 5.1).

Figure 5.1: Simulation execution time

33

5.1 Result Quality

The result quality of the queries in this paper’s evaluations is at a constant 100%. This is due to
the publishing without churn, indexing nodes returning to the network after a disconnect and
the relatively small size of the network.
Publishing to k nodes on a churned network can be achieved by repeating the ID lookup and
publish algorithm, until the desired amount of nodes has been reached. This implementation,
however, leads to a massive increase in the total simulation runtime, compared to simply pub-
lishing without churn, while leading to the same initial situation for the queries to be performed
on. If queries were to be performed for not finished publishes and during the publishing phase,
then there would be files published to n < k nodes, and a higher probability for an ID lookup
returning a set of k nodes that does not include any of the respective n nodes. This first factor
for the high result quality is therefore depending on the test scenario.
In real world applications, the published file information deteriorates and needs regular repub-
lishing. This happens when nodes holding the information leave the network. On PeerfactSim
a churned node is simply cut from the network and rejoins it after a period of time. Its inverted
index is therefore never completely lost. This factor is mainly depending on the implementation,
as data deterioration can be implemented. But as common implementations use republishing to
circumvent this problem, this just means that it would require more simulation time to achieve
the same results for the query algorithms. Furthermore, with the commonly used republish in-
terval of 60 minutes being enough, and the queries in this simulation taking place in a time slot
of 10 minutes, the expectable deterioration should not have any noticeable effect on the results.
If so desired, it would be simpler to take a given average rate of deterioration and calculate a
new result quality with it.
Finally, the network sizes used for this thesis’ simulations are not big enough to cover the chance
of finding an entirely different set of k nodes, when querying for a file, than the k nodes that file
has been published to. This last factor is a limit resulting from the simulator and the hardware
used for the simulations.

34

5.2 Network Load

The network load is directly influenced by the rate at which nodes send their queries. There
is a point at which the result quality and performance suffer gravely due to congestion. The
network load measurements are performed using the parallel query algorithm and a network
size of 1,000 nodes. According to later measurements the rate at which congestion poses a
problem when using the recursive query algorithm with this thesis test scenario is about 30%
higher.
In regards to the time needed to complete a query the best rate is one query per node per
minute (see Figure 5.2) while at rates up to 10 queries per node per minute all queries are
processed completely (see Figure 5.3). However congestion is not the only factor influencing
the performance. At rates lower than 0.1 queries per node per minute the query time rises
significantly. This happens due to the fact that there is no traffic in the simulated network
besides the queries and Kademlias periodic routing table refresh. In a churned network this
hourly refresh makes sure all nodes stay connected, but it does not provide optimal conditions
to perform lookups. If a node sends a query every minute this automatically updates parts of its
routing table through usage and also provides all the contacted peers with this node’s contact
information, thus improving their routing tables in case they didn’t know this node before.

Figure 5.2: Network Load – query execution time

35

The drop in result quality at about 10 queries per node per minute happens due to network
congestion. With less queries processed the network load decreases and therefore query times
actually improve slightly at rates between 20 and 50 queries per node per minute. It would
require many more simulations with query rates between 10 and 1,000 queries per node per
minute to determine if this effect results in a wave patern or is completely random.
As Kademlia scales very well it is safe to assume an upper limit of 10 queries per node per
minute even for bigger networks. It is also safe to assume that the average user will evaluate
the results for one query before starting a new one, which in addition to the query execution
time makes that rate very improbable in real world applications. On the contrary it very probable
the average query rate will be way lower than even the 1 query per node per minute, but as the
resulting increase in lookup time is related to each nodes local routing table this only means the
first few queries will be slow, after that the routing table is up to date and query execution times
will be similar to the ones measured in this thesis simulations.

Figure 5.3: Network load – queries processed

The rate of 1 query per node per minute chosen for the following simulations turns out to be
a good choice as lowering the result quality by loosing queries to congestion and beforehand
increasing the result time are unwanted side effects when measuring the query algorithms per-
formance.

36

5.3 Churn

Churn has a big impact on the overall performance and result quality and is more or less a
random factor. PeerfactSim allows to set a mean session length for the nodes. This value
describes the average time a node stays in the network before disconnecting for a period of
time. Raising it has direct influence on the query time as it increases the possibility of finding
all k nodes for a lookup while decreasing the possibility of not finding any node. Lookups that
return all k nodes usually finish a lot faster than the lookup timeout, while in a highly churned
network some lookups may take longer than the lookup timeout to return any result at all.
A good value for the mean session length should neither worsen the result time nor provide too
optimistic conditions. The value of 60 minutes chosen for this evaluation leads to an average
query time of about 2,800 ms (see Figure 5.4), which with a 2 second lookup timeout results in
a realistic 800 ms for contacting the queried nodes and transferring the result lists.

Figure 5.4: Churn – mean session length

37

Measuring the queries not executed due to churn at the querying node provides an insight on
PeerfactSims churn algorithm which, as expected, delivers somewhat random results even when
using the average of five runs with differing seed values (see Figure 5.5). This is important to
correctly interpret later measurements.

Figure 5.5: Churn – queries not executed

38

5.4 Lookups

In average the Kademlia ID lookups return about 8.9 contacts (see Figure 5.6). This result in-
creases by about 0.07 contacts when using the recursive search algorithm. The cause for this
slight difference is the way PeerfactSim calculates random values and uses them to generate net-
work churn, as both algorithms perform the same initial lookup and only differ in the following
IP traffic.
Both graphs rise proportionally to the network size but show a certain pattern instead of direct
proportionality. This is again due to the way PeerfactSim generates churn, as both graphs rise
indirectly proportional to their respective graphs from Figure 5.5. The slight rise is due to
the effectiveness of Kademlia in larger networks. Lookups are more likely to find a full set of
responsible nodes if there are more responsible nodes to pick from. The network sizes used
for this simulation don’t even come close to the size limits of real world Kademlia networks,
therefore no negative effect was to be expected when increasing the network size.
In real world Peer-to-Peer applications network churn is not a fixed value, and the quality of
ID lookups varies greatly. The overall ID lookup quality could be averaged to one single value,
but it is more useful to define a range of values in which it will be with a high probability. As a
result it can be stated that ID lookups in a Kademlia network with the dimensions and settings
used for this evaluation return an average count of contacts ranging between 8.85 and 9.1.

Figure 5.6: Lookup – contacts

39

5.5 Traffic

One major factor for a query algorithm’s performance is the traffic it generates. With the rela-
tively small dataset used for this evaluation the parallel query algorithm needs slightly less than
110 kbyte to execute, whereas the recursive query algorithm needs less than 85 kbyte, which is
an improvement of about 25 kbyte (see Figure 5.7). The graphs representing both algorithms
appear to be converging towards a certain value with rising node count.
It is necessary to further analyze the traffic in order to approximate the required traffic for bigger
network sizes as it consists of overlay traffic generated through the ID lookups and IP traffic for
transfering the result lists.

Figure 5.7: Traffic – combined traffic

40

The required overlay traffic is about identical for both query algorithms (see Figure 5.8). This is
to be expected as they both start with ID lookups while everything after that is handled through
the regular IP network protocol. Both algorithms repeat each of their ID lookups once every
second until it returns at least one contact.
It is important to note that the required overlay traffic increases by roughly 6 kbyte when in-
creasing the network size tenfold. With this it is possible to predict a required overlay traffic per
query of about 70 kbyte for a network size of 1,000,000 nodes for both query algorithms.

Figure 5.8: Traffic – overlay traffic

41

As expected, with about 25 kbyte the recursive query algorithm requires less traffic at transfer-
ring the result lists than the parallel query algorithm with about 50 kbyte (see Figure 5.9). This
is because the biggest result list ever transfered in the recursive process is as big as the smallest
one stored on the queried nodes. In this evaluation most queries have at least one sub-query
with just 10 results and all queries should return exactly 10 results. Therefore in most cases
the recursive query algorithm receives only result lists with the size of 10 whereas the parallel
query algorithm receives all lists in their full size (see Table 4.7).
It is important to note that with a bigger index and therefore bigger result lists this difference
might change drastically, depending on the difference between the average result list size and
the average lowest result list size for all queries.
For this evaluations index the consumed traffic should not change noticeably when increasing
the network size, as the result lists will not increase in size and the ID lookup still only contacts
the same k nodes. The needed IP traffic for queries on a network size of 1,000,000 nodes will
therefore be the same 50 kbyte for the parallel query algorithm and 25 kbyte for the recursive
query algorithm. Together with the overlay traffic this leads to a predictable traffic of 120 kbyte
for a parallel query and 95 kbyte for the recursive query, which saves about 20% of traffic on
the recursive search compared to the parallel search.

Figure 5.9: Traffic – IP traffic

42

However the recursive query algorithm needs to send out about as much traffic as it receives
(see Figure 5.10), with just the first query not being sent with a result list. When factoring
in the common asymmetric network connections and real world result lists which certainly are
bigger than the ones used for this simulation the recursive query algorithms bottleneck seems to
be the upload bandwidth of the querying node, which usually is by far less than the download
bandwidth. This furthermore leads to an uneven network load where the queried nodes send
far less than they could while the querying node could receive more but can not send any faster.
In comparison the parallel search requires some traffic from the queried nodes while receiving
as much as its download bandwidth allows.
There are examples in which either one of the algorithms performs better. The recursive query
algorithm highly depends on the smallest result list, while the parallel query algorithm simply
retrieves all available result lists.

Figure 5.10: Traffic – recursive algorithm in/out

43

5.6 Query Execution Time

Next to the result quality the query execution time is the most important attribute of a search
algorithm. It can be separated into the responsiveness of the query algorithm, which is the
elapsed time until the first result is displayed, and the total query execution time which is
reached once the last result has been determined.
With only a single exception for the recursive search on a network with 10,000 nodes the queries
responsiveness and total execution time are nearly identical (see Figure 5.11). This is because
for both algorithms there exists one incoming result list which changes the intersected result
list size from no entries to almost all if not all possible results. Additionally there is a high
probability that the other result lists for that sub-query arrive at the same time.
For the parallel search this happens when the longest result list has been received, as at this point
all other sub-queries already have received most of their answers due to the shorter transmission
times of their smaller result lists and thus the intersection with the newly received list delivers
results.
The recursive search processes its sub-queries one after the other, and therefore also has a point
at which the intersected result list grows from no results to almost all if not all results when the
last sub-query is processed.

Figure 5.11: Query execution time

44

A comparison of simulation results with similar churn attributes (according to Figure 5.5) pro-
vides a better insight on the algorithms performances (see Figure 5.12). Due to the limited
network size the parallel query algorithm still shows no sign of converging towards a certain
time, while the recursive search algorithms query execution time increases less with a rising
node count. This is due to the previously described increase in ID lookup traffic and IP traffic.
Taking previous results into account probable query execution times for a network size of
1,000,000 nodes would be 3,100ms for the parallel search and 3,300ms for the recursive search.
This can be safely assumed as the ID lookup timeout limits the first step of both algorithms to
2,000ms and there will always be a maximum of k = 10 nodes to contact per sub-query.

Figure 5.12: Query execution time with similar churn

45

6 Conclusion

This thesis is a first step towards simulating and evaluating full-text search algorithms on Peer-
to-Peer networks. It uses the Kademlia network, which is one of the best performing DHT
networks to date. Therefore the limits encountered can be seen as the upper limits of what is
possible with current DHT solutions.

6.1 Discussion

Queries on a Peer-to-Peer network used exclusively for full-text search perform quite well. They
are mainly limited by the size of the index as each keyword leads to the transfer of up to k result
lists.
While the parallel search is a straight forward implementation the recursive search requires an
iterative aproach to run on the Kademlia network. Both algorithms should perform well for
small amounts of data, but would require some modifications to run on bigger data sets such
as Wikipedia. With commonly used asymmetric Internet connections the recursive search is
restricted by the upload bandwidth of the querying node, whereas the parallel search solely
depends on its download bandwidth.
The query execution time and result quality do not depend much on the network size, meaning
that even relatively small networks with sizes between 1,000 and 20,000 nodes are able to
maintain and provide an inverted index of acceptable size. The average query execution time
consists of a 2 second ID lookup timeout and the time needed to transfer the result lists. The
recursive search algorithm needs another 200 ms to retrieve the result list sizes from the remote
peers.
With some modifications it should be possible to replace the full-text search of pages such as
Wikipedia with a DHT based solution. This would however require a service running for periods
of time on the participating nodes instead of a simple Java applet which is terminated when
the search page is closed or left, as the latter one would drastically reduce the mean session
length and lead to a suboptimal network churn. It would also work with just some enthusiasts
continuously running their clients and other users only joining the network to run a query as
Kademlia is able to favor well running nodes. This would however be similar to setting up
dedicated servers and goes against the philosophy of Peer-to-Peer networks.
It is pretty unrealistic to run an inverted index matching the size of the Google database any-
time soon, as the needed ranking mechanisms might pose a problem when intersecting multiple
ranked result lists, but also the required storage space on the client computers would exceed
any currently acceptable limit due to the necessary replication. To distribute the data in smaller
chunks across the network would require massive modifications to the whole network and does
simply not work with a regular DHT. It might probably work with some other distributed con-
cept, but it is safe to say that it is currently not possible to store this much data into a DHT
network.
Finally it is safe to say that up to a certain amount of shared data the query execution time
is well below the upper tolerable limit of 6 seconds [15], and the result quality will be 100%

46

as long as the data is stored well in the network. Publishing the data, maintaining it through
republishes and minimizing the result lists is by far more crucial to the performance of full-text
search on Peer-to-Peer networks than the actual algorithms.

6.2 Future Work

Small full-text search scenarios on the Kademlia network provide promising results and an in-
sight to possible limits. This opens further work to analyze and possibly widen those limits:

• The biggest drawback of the parallel search algorithm is the amount of data the result
lists take up. A remote intersection could help reduce those lists. One way to provide
the possibility of remote intersection would be to publish data with a full list of all its
keywords or keyword hashes. The responsible peers maintain additional entries in their
inverted index for them even if they are not within their responsibility. A full-text search
query then transfers a list of all its keywords with every sub-query so the remote peer can
use this additional information to return an intersected list. It would be interesting to
analyze how much the storage requirements on each peer increase through this step, the
impact on publication costs and if it is actually practicable with today’s average private
storage space and Internet connection bandwidth.

• Modifying the recursive search to use a bloom filter before transferring the result lists may
save bandwidth as the list grows with each step instead of shrinking. The query execution
time might however suffer from the additional communication. It would be interesting to
find out if the smaller result lists make up for the additional bloom filter processing and if
this increases the amount of data manageable through the distributed inverted index.

• Another way to limit the result list sizes is to invoke a ranking mechanism and cropping
the list after the top n results. This can be done by using various ranking algorithms in
combination with a feedback mechanism where clicked results get some sort of ranking
points. It would be interesting to see if this can be done or if by cropping multiple result
lists the resulting intersected result list suffers too gravely.

• Up to a certain amount of published data recursive and parallel search perform pretty well.
It would be interesting to find out at which scenarios either the recursive or parallel queries
perform better and if switching to the parallel search after retrieving the remote peers’
result list sizes and determining them to be too big for the available upload bandwidth
improves the performance.

• To make full-text search result lists understandable for users a set of information is neces-
sary such as describing meta-data and citations around the keywords. When using Peer-to-
Peer full-text search in real world applications it is either necessary to store more than just
a Kademlia key in the inverted index for each keyword or the data for each key in the re-
sult list has to be stored under that key and obtained through a lookup. However running
an ID lookup for each result generates an unacceptable amount of traffic. Compression
algorithms may help save storage space and bandwidth when storing additional data into
the index. It would be an interesting work to evaluate several compression algorithms and
the impact of features on the overall performance in real world scenarios.

47

List of Figures

3.1 Recursive search – phases . 23
4.1 Overlay network layer – lookup timeout . 28
5.1 Simulation execution time . 33
5.2 Network Load – query execution time . 35
5.3 Network load – queries processed . 36
5.4 Churn – mean session length . 37
5.5 Churn – queries not executed . 38
5.6 Lookup – contacts . 39
5.7 Traffic – combined traffic . 40
5.8 Traffic – overlay traffic . 41
5.9 Traffic – IP traffic . 42
5.10 Traffic – recursive algorithm in/out . 43
5.11 Query execution time . 44
5.12 Query execution time with similar churn . 45

48

List of Tables

2.1 PeerfactSim functionality layers . 11
4.1 kadFTS.XML . 25
4.2 Setup() class . 25
4.3 kadFTS-actions.dat . 25
4.4 Network population . 26
4.5 Overlay network configuration . 29
4.6 DocumentProvider() – strings . 31
4.7 DocumentProvider() – result lists . 32

49

Listings

3.1 DocumentProvider() . 13
3.2 Publish – message handler . 15
3.3 Publish – publish call . 15
3.4 Kademlia send() . 16
3.5 Publish – publish queue . 16
3.6 Parallel search – message handler . 17
3.7 Parallel search – query call . 18
3.8 Parallel search – query queue . 18
3.9 Recursive search – message handler . 20
3.10 Recursive search – query call . 20
3.11 Recursive search – query queue . 21

50

Bibliography

[1] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karger, and R. Morris. On the feasibility
of peer-to-peer web indexing and search. Lecture Notes in Computer Science, 2003.

[2] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Scalable peer-to-peer web retrieval
with highly discriminative keys. 23rd ICDE, 2007.

[3] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. Lecture Notes in
Computer Science, 2003.

[4] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Performance of full text search in
structured and unstructured peer-to-peer systems. INFOCOM, 2006.

[5] W. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top-k retrieval in
peer-to-peer networks. 21st ICDE, 2005.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
adressable network. In Proceedings of the 2001 SIGCOMM conference, pages 161 – 172,
2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 confer-
ence on Applications, technologies, architectures, and protocols for computer communications,
pages 149–160, 2001.

[8] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Lecture Notes in Computer Science, 2001.

[9] B. Y. Zhao, B. Y. Zhao, J. Kubiatowicz, J. Kubiatowicz, A. D. Joseph, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical
report, University of California, 2001.

[10] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based on
the xor metric. In Lecture Notes in Computer Science, pages 53–65, 2002.

[11] Wikipedia. Overnet — Wikipedia, the free encyclopedia, 2009. [Online; accessed 11-
March-2009].

[12] B. René. A performance evaluation of the kad-protocol. Master’s thesis, Universität
München, 2006.

[13] M. Steiner, D. Carra, and E. W. Biersack. Faster content access in kad. In Eighth Interna-
tional Conference on Peer-to-Peer Computing, pages 195 – 204, 2008.

[14] A. Kovacevic, S. Kaune, P. Mukherjee, N. Liebau, R. Steinmetz Benchmarking Platform for
Peer-to-Peer Systems In it - Information Technology, pages 312–319, 5/2007.

51

[15] P.v. Schaik, J. Ling. The effect of system response time on visual search in Web pages. In
The Electronic Library, pages 264 – 268, 2004.

[16] DIMES. The dimes project - a distributed scientific research project, aimed to study the
structure and topology of the internet, 2009. [Online; accessed 12-July-2009].

[17] Akamai. First Quarter 2009 State of the Internet Report. [Online; accessed 16-June-2009].

52

Eidesstattliche Erklärung

zur Diplomarbeit

Hiermit versichere ich, dass ich die Diplomarbeit selbständig und lediglich unter Benutzung der
angegebenen Quellen und Hilfsmittel verfasst habe.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen Prüfungsver-
fahren zugrunde gelegen hat.

Ich bin damit einverstanden, dass ein Exemplar meiner Diplomarbeit in der Bibliothek aus-
geliehen werden kann.

53

