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Zusammenfassung

Trimm-Dich-Pfade sind beliebte Outdoor-Trainingsstätten und können eine wichtige Rolle in der präven-
tiven Gesundheitsvorsorge spielen. Die Begleitung mit einem digitalen Assistenten bei der Durch-
führung eines solchen Parcours könnte zu einem motivierenderen Erlebnis führen und daher zu einem
regelmäßigeren Workout. Hierfür ist das Erkennen und Verfolgen der ausgeführten Übungen zwingend
notwendig. Allerdings gibt es noch keine bekannten Projekte, die diesen spezifischen Kontext erforscht
haben.

Dieser Bericht gibt eine detaillierte Erklärung über eine vorausgehende Fallstudie, die verschiedene As-
pekte dieser Fragestellung untersucht. Nach der Erstellung representativer Datensätze werden unter-
schiedliche Parameter ermittelt, die sowohl die Erkennung der Aktivitäten als auch die Akzeptanz der
Benutzer bezüglich eines solchen Systems betreffen. Am Ende werden die Erkenntnisse der Evaluation
zusammengefasst und Vorschläge für die Übertragung dieser Ergebnisse auf einer konkreten Implemen-
tierung bereitgestellt.
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Abstract

Fitness trails are popular outdoor training sites and can play an important role for preventive health
care through physical exercise. Doing such a parcourse accompanied by a digital assistant could lead
to a more motivating experience and therefore, to a more regular workout. For this, recognizing and
tracking the performed activities is mandatory. However, there are no known projects having explored
this specific context yet.

This report gives a detailed explanation about a preliminary case study examining various aspects of
this problem. After the acquiring of representative datasets, different parameters concerning both the
recognition of the exercises and the user’s acceptance of such a system are investigated. At the end the
insights of the evaluation process are summarized and recommendations for carrying over these results
onto a concrete implementation are provided.
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1 Introduction

During the beginnings of the fitness boom in the 1970s, fitness trails have been particularly popular for
people concerned about their health, who want to reduce the risk of chronic diseases by improving their
physical strength. These tracks are equipped with obstacles or stations distributed along the path. The
equipment can be used for performing specific forms of physiological exercise and the distribution of
these stations over the length provides a challenging sort of interval training promoting a good fitness
workout for exercising the human body.

For the last couple of years, preventive health care has again obtained an increasing importance, espe-
cially in order to cope with medical problems related to overweight or cardiovascular diseases. In this
context, regular exercise is a good prevention method and can help reducing the expensive costs of the
health care systems. This is one of the main reasons for the growing interest in monitoring a person’s
physical state using body sensor networks (BSNs).

A BSN consists of wearable sensor nodes for measuring the physiological parameters of a person.
The network often assesses the user’s current state by using accelerometers. By adding such sensors
to fitness accessories, the system is able to monitor not only vital signs but also training activities like
the performed exercises. The domain of activity recognition addresses the problem of interpreting and
mapping the raw sensor data to the concrete tasks being done by the user. So the goal is to recognize
and track the characteristic actions with the aid of the measured physical poses and movements.

One of the most important information about how a user performed on the trail is which obstacles or
stations were taken and how many repetitions were done. Hence, a body sensor network using activity
recognition and exercise counting could do that automatically and let the trainee focus on the exercises,
without having the logging of this information to be done on his/her own. Furthermore, the system
could also motivate the user, for instance by giving information about how many repetitions where done
the last time.

As previous work ([1], [2]) has shown inertial sensors to be a good choice for detecting and counting
gym or free-weight exercises, for the purpose of extending the existing digital training assistants to
this particular setup, there is the need of investigation how well the presented methods and resulting
concepts from prior research can be reused and adapted for providing a wider range of health care
through prevention.

Thus, the aim of this thesis is to do primary research that is required before a future development
of a concrete assistant for outdoor training parcourse. For this, both the recognition of activities and
the repetition counting as well as the user’s acceptance and needs have to be especially investigated.
The outcomes of this work could then be used to find out if and how the measurement of the different
postures and motions during the fitness trail could help people exercising effectively, and whether the
provided information could lead to a better motivation for doing the workout regularly. By the end of
this thesis, the results should supply enough knowledge permitting the implementation onto a real sys-
tem, because these recommendations will eventually be ported for extending myHealthAssistant.
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Due to the fact that there is no known data from trainees performing such a track with inertial sensors,
an important part of this case study will be to create the datasets required for the evaluation, both of
the detection of the exercises and of the user’s acceptance. The underlying experiments for this part are
described in the next section (2).

The remainder of the thesis is then structured as follows: Section 3 gives a detailed explanation of the
feature extraction and parameter optimization needed for the activity detection and the exercise counts.
The results of the questionnaire for evaluating the comfort and the needs of such wearables from a user’s
point of view are presented in Section 4. Finally, Section 5 concludes with a brief summary and the
consequences of the study and provides an outlook with suggestions on how to deploy the results onto a
concrete system.
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2 Experiments for Collecting Data

2.1 Task Description

For the development of the activity recognition system for fitness trails, the first mandatory part will be
to collect sufficient and representative data from sample runs of the scenario. This chapter shall give a
detailed explanation on how the underlying experiments will work and what results are sought through
the evaluation of the collected datasets.

2.2 Goals

• evaluating the user’s acceptance regarding sensor setup and comfort at different positions

• analyzing potential sensor displacement during the fitness trail (e.g., caused by shifting) and pos-
sible consequences for accelerometer data

• collecting training and test datasets to extract good features needed for activity recognition and
repetition counting

2.3 Fitness Trails

In order to have enough variety, two different fitness trails will be used: The first one is the “Bewe-
gungsparcours Darmstadt” in the Bürgerpark, a rather new one with modern equipment but where all
exercise positions are more or less at the same place. The second trail at the Ludwigsteich in Roßdorf is
more traditional with an alternation between fitness exercise and running or walking to the next position
(see the pictures of the different activities on the particular tracks at Figures A.1 and A.2).

2.4 Sensors

Since the activity recognition system will rely on the acceleration data measured by the worn sensors dur-
ing the different exercises, a set of “HedgeHog”-sensors (http://www.ess.tu-darmstadt.de/hedgehog)
will be used to collect off-line training data from which later on the best features will be extracted and
evaluated.

2.5 Preliminary Constraints Regarding the Sensor Positions

Based on previous work ([1], [2], [3], [4], [5], [6], especially those addressing recognition of dy-
namic and athletic activity), for tracking different movements the following sensor positions (mostly
combinations of two of those) were found to work quite well:

• wrist

• upper arm

• chest

• upper leg

• ankle

Hence, the focus will be to find out which combination of those sensor positions leads to the best trade-off
between performance of the recognition and acceptance by the user.

3
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2.6 Sensor Setup

Three sensors with straps will be used, all of them marked with an arrow. The user will be told to put
on the sensors on his/her own such that all arrows are pointing towards the bottom when standing still
with the arms close to the body (see Figure 2.1).

During the first run, the combination of the positions will be:

• wrist 2.1(a)

• chest 2.1(c)

• ankle 2.1(e)

For the second run, the user will need to remove all sensors and wear them now at following positions:

• upper arm 2.1(b)

• chest 2.1(c)

• upper leg 2.1(d)

(a) wrist (b) upper arm (c) chest (d) upper leg (e) ankle

Figure 2.1.: Sensor positions

2.7 Synchronizing and Measure of Sensor Slipping

For the purpose of having characteristic accelerometer data for synchronizing the different sensors, both
at the beginning and at the end the user will need to stand still for 30 seconds and then to jump three
times. Further, this will allow to see the potential impact of slipped sensor positions while performing
the fitness trail by analyzing the differences in the measured data of these characteristic movements
between the beginning and the end.

Figures 2.2(a) and 2.2(b) show how this task looks like in the plots: the long horizontal lines are
the measured inertia when the trainee stands still for 30 seconds. These are subsequently followed by
the accelerations when the user jumps three times. The distinct peaks are pretty well synchronized and
there is also only a small difference between the measurements before and after performing the track,
meaning that there was no really significant sensor displacement while doing the different stations.
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(a) 30 seconds standing still followed by three jumps before the parcourse

(b) 30 seconds standing still followed by three jumps after the parcourse

Figure 2.2.: Synchronizing and Measure of Sensor Slipping

2.7. Synchronizing and Measure of Sensor Slipping 5



2.8 Experiment Run

The users will be told to do the track consisting of the following activities:

• running

• 10x back stretching (Fig. A.1(a) and A.2(a))

• running

• 20x diagonal hand to foot moving (Fig. A.1(b) and A.2(b))

• running

• 5x pull-ups (Fig. A.1(c) and A.2(c))

• walking

• 10x abdominals (Fig. A.1(d) and A.2(d))

• running

• 10x alternate one-leg bench jumps (Fig. A.1(e) and A.2(e))

• running

• 20x torso turns (Fig. A.1(f) and A.2(f))

• running

• 10x squats (Fig. A.1(g) and A.2(g))

• walking

• 10x push-ups (Fig. A.1(h) and A.2(h))

• running

2.9 Evaluation of the User’s Acceptance

The comfort rating of all sensor positions will rely on the methods presented in [7] and [8]. Therefore,
the user will need to mark his/her level of agreement for each sensor position on a Likert-scale from 1
to 5 for each of the following questions:

• I feel self-conscious having people see me wear this device (Emotion)

• I feel the device moving on my body (Attachment)

• I feel some pain or discomfort wearing the device (Harm)

• I feel awkward or different wearing the device (Perceived Change)

• I feel that the device affects the way I move (Movement)

• I feel secure wearing the device (Anxiety)

6 2. Experiments for Collecting Data



Additionally, the user will be asked:

• for each sensor to rate how difficult it was to wear it (Likert-scale from 1 to 5)

• to give a ranking of the favorite combination of two sensors (name at least 3 different ones)

• to say whether they think the whole system is useful (Likert-scale from 1 to 5)

• to state under which constraints (e.g. maximal number of sensors or no-go positions) they would or would
not use the system

Finally, just the following personal data will be collected, because the privacy of the test subjects has to
be respected:

• age

• gender

• fitness level (scale from 1 to 5)

So while keeping the answers anonymized, having this extra information would still allow to investigate
whether there is a correlation between the provided responses and, for instance, the fitness level.

2.9. Evaluation of the User’s Acceptance 7





3 Evaluation of the Datasets

3.1 Activity Recognition

For the detection of the different activities, an approach calculating basic statistics from the time series
of the accelerometer data over a sliding window will be used. Thus, the most distinct features for
characterizing the activities in a distinct way have to be determined. As previous work ([2], [5], [9]
or [10]) has shown that the features mean, variance, maximum and minimum seem to work quite well
for distinguishing dynamic movements, the focus will rest upon finding the best window size and the
optimal combination of features and sensors while keeping those rather simple statistical terms, that are
easy to calculate.

The performance of the different parameters will be evaluated with the “cluster precision” methods
presented in [10] and [11]. The main principle of this approach is to assess the parameters leading to
the highest cluster precision, meaning that each cluster nearly contains only feature vectors of the same
class (i.e. the clusters provide a good separability of the different activities).

The evaluation goes like this: the clustering is done with k-means using a five-fold cross-validation,
for which the dataset is divided into five partitions of equal size. Four partitions are used as training
data for learning the cluster-centroids and the remaining one serves as test set, where the clustering of
each feature vector is done by assigning it to the nearest centroid. Now the precision of these activities
can be computed by first measuring the distribution of feature vectors for different activities within the
clusters. This is done by calculating the following fraction for each cluster i and activity j:

pi, j =

��Ci, j

��
�

j

��Ci, j

�� (3.1)

where
��Ci, j

�� is the number of vectors in cluster i labeled with activity j.

Then the cluster precision pj for activity j is obtained by computing the weighted sum of these fractions:

pj =

�
i pi, j

��Ci, j

��
�

i

��Ci, j

�� (3.2)

This weighted sum can then be used to compare different parameters and optimize the choices of their
values in order to get clusters with a high precision pj, leading to a clear separability of the distinct
activities and subsequently hints at a good recognition later on, using these data and features.
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3.1.1 Results of the cluster precision analysis

The first step consists of finding good values for the window size, that can be applied during the subse-
quent feature analysis. As the duration for performing some of the activities does not exceed 8 seconds,
this will be the maximal value for the window size that will be considered. For the features minimum,
maximum, mean and variance, Figure 3.1 shows the average cluster precision with increasing window
size. As further evaluation possibly will influence the value for the optimal window size, for the next
steps two different sizes will be kept: 3 seconds as this is the minimum window with an acceptable
average cluster precision, and 5 seconds as this is the current overall best value.

(a) Feature: minimum (b) Feature: maximum

(c) Feature: mean (d) Feature: variance

Figure 3.1.: Average cluster precision with increasing window size for the different sensor positions
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As a next step the best features need to be fixed by comparing the cluster precision for the pairs mean-
variance, mean-minimum, mean-maximum, variance-minimum and variance-maximum. Figures 3.2 and
3.3 show the impact of the different feature pairs for each sensor position, with a window size of 3 or
5 seconds respectively. Especially when looking at the averaging plots below the detailed ones, one can
see that the optimal feature pair is mean-variance, so these are the features that will be taken from now
on.

(a) Sensor position: wrist (b) Sensor position: arm (c) Sensor position: chest

(d) Sensor position: leg (e) Sensor position: ankle

Figure 3.2.: Cluster precision for the different feature pairs with a window size of 3 seconds

3.1. Activity Recognition 11



(a) Sensor position: wrist (b) Sensor position: arm (c) Sensor position: chest

(d) Sensor position: leg (e) Sensor position: ankle

Figure 3.3.: Cluster precision for the different feature pairs with a window size of 5 seconds
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Now, with the features being set to mean-variance, the effect of an increasing window size on the cluster
precision will again be analyzed. The results for each sensor position are shown at Figure 3.4 and lead
to refine the choices of the optimal window size to the following values: 3 seconds as a minimum value
with acceptable precision, and 6 seconds as the current overall best. The main benefit of continuing
the evaluation with both window sizes (instead of just keeping the optimal one) is due to the fact that
small windows are convenient for systems with small memory and computation resources, therefore it is
important to consider them as well.

(a) Sensor position: wrist (b) Sensor position: arm

(c) Sensor position: chest (d) Sensor position: leg

(e) Sensor position: ankle

Figure 3.4.: Average cluster precision with increasing window size for mean-variance feature vectors
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The next step will be the determination of the sensor combinations that perform best for detecting
the different activities. This is done by calculating the cluster precision of the different activities for
each combination of sensor positions (wrist-arm, wrist-leg, wrist-ankle, arm-leg, arm-ankle, leg-ankle,
chest-wrist, chest-arm, chest-leg, chest-ankle, wrist-chest-ankle). Both for a window size of 3 and 6
seconds, when looking at the averaging plots of Figure 3.5 below the detailed ones, the overall optimal
positions are wrist-ankle and wrist-chest-ankle, so these sensor combinations will be selected for the
activity recognition.

(a) Window size: 3 seconds

(b) Window size: 6 seconds

Figure 3.5.: Cluster precision for the different sensor combinations
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After having fixed the optimal combinations of sensor positions, the cluster precision dependence on an
increasing window size is evaluated one more time in order to set the window size to the best value
when all other parameters are chosen like described above. Figure 3.6 suggests to refine the window
size one more time to a value of 4 seconds, because this is the minimal length with an acceptable cluster
precision (shortest window size with approx. 90% average precision in both cases). So this leads to a
good tradeoff between a performant activity extraction and a short window length, that is favorable for
small memory and computation resources.

(a) Sensor combination: wrist-ankle

(b) Sensor combination: wrist-chest-ankle

Figure 3.6.: Average cluster precision with increasing window size for the best sensor combinations
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Finally, for both best sensor combinations wrist-ankle and wrist-chest-ankle and with a window size of
4 seconds and with mean-variance feature vectors, Figure 3.7 demonstrates that these parameters work
quite well for recognizing the different activities, as the resulting cluster precision almost always is above
80%.

(a) Sensor combinations: wrist-ankle and wrist-chest-ankle

Figure 3.7.: Resulting cluster precision for each activity with mean-variance feature vectors and a
window size of 4 seconds

The fact that the average cluster precision with the assessed parameters from above seem to converge
with increasing training and test data, indicates that probably the number of test subjects is sufficient for
this preliminary analysis, even if of course more data is always good for claiming strong results from an
evaluation of a user’s case study. Beyond that, a higher number of users would probably help in being
more robust against outlier participants.

(a) Sensor combination: wrist-ankle (b) Sensor combination: wrist-chest-ankle

Figure 3.8.: Convergence of the average cluster precision with increasing number of datasets
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3.2 Repetition Counting

As a visual analysis of the collected data has shown that the number of repetitions within an activity
is highly correlated to the measured data from the sensors, and due to the fact that previous work
([1], [2]) also used peak-detection algorithms for solving a similar issue, the general idea will be to
count repetitions by finding the significant peaks in the acceleration of the different sensors along the
dominating axes.

Since in the previous section the best sensor positions for the activity recognition have been determined
to be wrist, chest and ankle, only these ones will be used for trying to count repetitions appropriately.
The other sensor positions arm and leg will not be evaluated.

The algorithm for finding the global minima and maxima of the accelerometer data for a specific axis
is adapted from http://billauer.co.il/peakdet.html and described at Alg. 1. The parameters to be
adapted are highlighted in red and describe the following:

• del ta_v al → the least difference in the acceleration values between a maximum and a minimum

• del ta_t ime→ the least time difference between two peaks.

In a first step, for each activity (except running and walking) the dominating axes on every sensor’s data
have to be figured out. For this both prior knowledge and plots of the measured accelerations will be
used. For instance, the ankle-sensor can be neglected for counting repetitions of activities where one
has to be standing on the ground without moving the feet (e.g. back-stretching). Furthermore, the two
different trails in Darmstadt or Roßdorf will be evaluated separately, because the activities sometimes
have to be performed differently, depending on the actual equipment (e.g. abdominals).

Afterwards, for these characteristic axes the parameters of the algorithm will be optimized in order to
find the best recognition of those peaks that correlates with a single repetition of an activity. Possibly the
choice of the best sensors and axes for counting the repetitions of a specific activity will also be refined
during this evaluation.

Preliminary runs of a prototype implementation have already lead to surprisingly good results, that, at
least for this evaluation, encourages not to use additional preprocessing filters, because the noisy accel-
eration data (mostly due to human impreciseness or trembling while performing the different activities)
seems to be generalized quite well already with this rather simple algorithm.

3.2. Repetition Counting 17
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Algorithm 1 Peak-Detection Algorithm

Input: t ime_series of (t, a)-pairs � t: timestamp, a: acceleration
Output: lists max_l ist and min_l ist of (t, a)-pairs with maxima and minima

Initialization

max_v al ←−∞ � last maximum acceleration value
max_t ime← 0 � last maximum time position
min_v al ← +∞ � last minimum acceleration value
min_t ime← 0 � last minimum time position
look f ormax ← true
max_l ist ← [ ] � [ ]: empty list
min_l ist ← [ ]

Iteration

for i = 1→ length(t ime_series) do

cur_v al ← t ime_series.a[i] � current acceleration value
cur_t ime← t ime_series.t[i] � current time position

if cur_v al > max_v al then

(max_v al, max_t ime)← (cur_v al, cur_t ime)
end if

if cur_v al < min_v al then

(min_v al, min_t ime)← (cur_v al, cur_t ime)
end if

if look f ormax is true then

di f f ← (cur_t ime−max_t ime)
if cur_v al < (max_v al − del ta_v al) and di f f > del ta_t ime then

max_l ist. append{(max_t ime, max_v al)}
(min_v al, min_t ime)← (cur_v al, cur_t ime)
look f ormax ← false

end if

else

di f f ← (cur_t ime−min_t ime)
if cur_v al > (min_v al + del ta_v al) and di f f > del ta_t ime then

min_l ist. append{(min_t ime, min_v al)}
(max_v al, max_t ime)← (cur_v al, cur_t ime)
look f ormax ← true

end if

end if

end for
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3.2.1 Visual Evaluation of the Acceleration Data

After having evaluated the graphical plots of the measured accelerations, Table 3.1 shows for each activ-
ity the most promising sensors and axes that will be considered in the further evaluation of the repetition
counting.

Table 3.1.:Most promising sensors and axes for repetition counting after visual evaluation
activity Roßdorf Darmstadt
back stretching wrist: x/y/z , chest: y/z wrist: x/y/z , chest: y/z
diagonal hand to foot moving wrist: x/y/z , chest: x/y/z wrist: x/y/z , chest: x/y/z
abdominals wrist: y , chest: y/z ankle: y
torso turns wrist: x/y/z wrist: y/z , chest: x
squats wrist: y/z , ankle: x/y/z , chest: y/z wrist: z , chest: y/z
push-ups wrist: x , chest: z wrist: x/z , chest: z

An illustration how this analysis has been done can be found at Figure 3.9, showing squats in Darmstadt:
the three subplots are the inertia of the wrist, ankle and chest sensors respectively. The blue lines are the
accelerations in x-direction, the green ones the accelerations in y and the red lines in z-direction.

One can see that for the wrist-position the red z-acceleration and that for the chest the green y and
the red z-acceleration have all ten regularly distributed maxima and minima, while the other ones do
not have the same kind of a characteristic frequency. Therefore, those axes are expected to be the most
appropriate ones for counting this specific activity.

Figure 3.9.: Raw sensor data for squats in Darmstadt

Note that for the next steps the activities “pull-ups” and “alternate one-leg bench jumps” will be left out,
because there were no recognizable similarities in the measured accelerations of how the different users
performed this action. Further evaluation of different approaches would probably be needed in order to
be able to count the number of movements for these specific activities.
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3.2.2 Optimization of the Parameters

As already mentioned before, the parameters of the algorithm that need to be optimized are:

• del ta_v al → the least difference in the acceleration values between a maximum and a minimum

• del ta_t ime→ the least time difference between two peaks.

The first parameter del ta_v al actually will not be optimized directly, but computed according to:

del ta_v al =
max(t ime_series.accelerat ion)−min(t ime_series.accelerat ion)

del ta_y_div
(3.3)

so eventually the best value for the parameter del ta_y_div (controlling which proportion of the overall
distance between the highest and the lowest acceleration value has to be the least difference between a
maximum and a minimum) will need to be determined instead.

In order to optimize the parameters, plots showing the average difference between the actual number
of repetitions and the computed one dependent on the factor del ta_y_div will be used, with different
fixed values for the parameter del ta_t ime (blue: counting the detected maxima, red: counting the de-
tected minima).

First, the optimal value for the parameter del ta_t ime is figured out by comparing the resulting plots for
del ta_t ime varying between 0.1 and 1.5 seconds. It turns out that a value of 0.5 seconds is the overall
best for an accurate counting, and furthermore a low value for this parameter helps keeping the window
small.

Figure 3.10 provides a representative example of this process: the comparison of counting push-ups
in Roßdorf with the acceleration in x-direction of the wrist sensor has the least average error when
del ta_t ime is 0.5 seconds, regardless of the value for del ta_y_div .

(a) del ta_t ime = 0.1 seconds (b) del ta_t ime = 0.5 seconds

(c) del ta_t ime = 1.0 seconds (d) del ta_t ime = 1.5 seconds

Figure 3.10.: Average error when counting push-ups in Roßdorf with wrist sensor acceleration
in x-direction
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Next, with del ta_t ime fixed to 0.5 seconds, the best value for the factor del ta_y_div (determining
the parameter del ta_v al) has to be evaluated. Figures 3.11 and 3.12 illustrate the effect of increasing
del ta_y_div when counting the repetitions of different activities at both tracks. Altogether it seems
that a value of 3 for del ta_y_div is most appropriate, leading to the least average error in the repetition
counts.

(a) Push ups: x-axis on wrist sensor (b) Torso turns: x-axis on wrist sensor

(c) Back stretching: x-axis on wrist sensor (d) Diagonal hand to foot moving: y-axis on
wrist sensor

Figure 3.11.: Effect of increasing del ta_y_div for counting repetitions in Roßdorf
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(a) Squats: y-axis on chest sensor (b) Torso turns: x-axis on chest sensor

(c) Back stretching: y-axis on wrist sensor (d) Diagonal hand to foot moving: x-axis on
wrist sensor

Figure 3.12.: Effect of increasing del ta_y_div for counting repetitions in Darmstadt
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Now, after having determined the optimal values for the parameters, for each activity the best sensors
and axes can be fixed by choosing those having the least average error when counting the repetitions.
Table 3.2 shows the resulting selection of sensors and axes.

Table 3.2.: Best sensors and axes for repetition counting after parameter optimization
activity Roßdorf Darmstadt
back stretching wrist: x/y , chest: z wrist: y/z , chest: z
diagonal hand to foot moving wrist: y/z , chest: x wrist: x/y , chest: x
abdominals wrist: y , chest: z ankle: y
torso turns wrist: y/z wrist: z , chest: x
squats wrist: y , ankle: y , chest: z wrist: z , chest: y
push-ups wrist: x , chest: z wrist: z , chest: z

Indeed, the algorithm with the determined parameters described above leads to a good correlation be-
tween the detected peaks in the acceleration and the corresponding repetition counts, when using the
selected sensors and axes. For both fitness trails, the resulting repetition counts through peak-detection
for every activity is visualized in the Figures B.1, B.2, B.3 and B.4.

Finally, Figures 3.13 and 3.14 show the average accuracy of the counted repetitions for both Roßdorf
and Darmstadt, when varying either del ta_y_div or del ta_t ime while letting the other one fixed at
its best value. The plots confirm that the best average accuracy is reached if del ta_t ime is set to 0.5
seconds and del ta_y_div equals 3.

(a) Counting in Roßdorf (b) Counting in Darmstadt

Figure 3.13.: Average accuracy when varying del ta_t ime

(a) Counting in Roßdorf (b) Counting in Darmstadt

Figure 3.14.: Average accuracy when varying del ta_y_div
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4 Comfort Rating - Questionnaire Evaluation

4.1 Test Subjects

Each track has been performed by four different persons: Two of them were female subjects and the
remaining six were male. Overall six persons had an age of ∼ 22 and two were ∼ 50 years old. Three
persons had a low fitness level, three were regularly exercising users and also two high-performance
athletes performed the trails.

4.2 Comfort of Wearables according to Knight et al. [7]

The first important result regarding the comfort assessment is that for each sensor the question “I feel
secure wearing the device” has always been answered with a “1” (i.e. “I do not agree at all”). Fur-
thermore, some of the users mentioned that this question concerning “anxiety” is not relevant in this
whole context, as the sensors are not providing any additional assurance while performing the activi-
ties. Hence, this dimension will not be considered for rating the comfort of the different sensor positions.

For the remaining comfort dimensions Figure 4.1 shows the average value (surrounded by the 0.25 and
0.75 quartiles) that the users provided on the five-point Likert-scale for every sensor position. One can
clearly see that overall the wrist and ankle positions seem to be accepted best. Additionally, especially
the attachment and the convenience of the sensors should be improved, because these aspects have been
rated worst.

(a) I feel self-conscious having
people see me wear this device

(b) I feel the device moving on
my body

(c) I feel some pain or discomfort
wearing the device

(d) I feel awkward or different
wearing the device

(e) I feel that the device affects
the way I move

Figure 4.1.: Comfort rating evaluation
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4.3 Further Results of the Questionnaire

Regarding the difficulty of wearing the sensors, Figure 4.2 demonstrates that at least the chest and the
upper arm seem to be a bit more complex to attach. Thus, the current system using simple straps should
be improved for helping the user with putting on the sensors.

Figure 4.2.: Difficulty to wear the sensors

Concerning the favorite sensor combinations, 100% of the users have chosen “wrist/ankle” as their
preferred one. This combination is followed by “chest/ankle”, “upper arm/ankle” and “wrist/chest”. So
surprisingly, this fits quite well with the sensor positions that have been determined to work best in the
previous chapter.

The maximal number of accepted sensors varies between two and four, but the fact whether the sen-
sors hurt or not has been stated as much more important regarding the decision whether the test subjects
would use the system or not. Therefore, the development of a comfortable sensor attachment should
clearly be a main point of interest when creating a concrete setup, in order to mitigate the risk that the
system would not be adopted, which would defeat the objective of the whole study work.

Another point worth to mention is that most of the regularly exercising users stated that they would not
make use of this system for their own, as they rather “prefer to train by instinct”. Only high-performance
athletes could imagine to possibly use this additional information if it could help them to revise and
enhance their training results when doing the track.

Nevertheless, many test subjects said that instead of rather “uninteresting” repetition counts, they
would be much more interested in getting feedback whether they perform the movements correctly. So
further investigation in learning to differ “good” from “bad” or “unhealthy” moves could maybe lead to
a system that is more motivating, as it could help the athlete to correct the way of doing the fitness trail
on his/her own.

Last but not least, it is important to note that this case study probably needs many more users in order
to claim strong results.
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5 Conclusions

The aim of the thesis was to do primary research required before a future development of a training
assistant for fitness trails. This report described the realization of the case study and the acquired insights
through the evaluation process. Since the results eventually will be used for extending myHealthAssistant,
the conclusion will start by summarizing the general results obtained during the thesis and finish by
giving some recommendations for an implementation of an actual system.

5.1 Summary and Consequences of the Study

The activity recognition seems to work best for mean-variance feature vectors calculated over a sliding
window of 4 seconds. If using just two different sensors, the most appropriate combination would be
wrist-ankle. These sensors are also the most accepted ones regarding the comfort rating. Working with
three sensors can increase the precision of the recognized movements: in this respect, the wrist-chest-
ankle combination was determined to be the optimal one. But especially the chest sensor tends to lower
the users’ acceptance of using such a system. Hence, the improvement of the sensor attachment and
comfort should be a main topic for further investigation.

For counting the repetitions within an activity, the “Peak-Detection Algorithm” Alg. 1 is expected to pro-
vide encouraging results. The best accuracy should be reached when setting the parameter del ta_t ime
to a value of 0.5 seconds and computing the parameter del ta_v al according to Eq. 3.3 with del ta_y_div
being set to 3. For the distinct activities done on a specific track, Table 3.2 shows along which sensors
and dominating axes the numbers of movements should be counted.

Beside this repetition counting, an important result of the case study was that many users stated to be
more interested in a system correcting their way of performing the movements. Thus, a more in-depth
study in distinguishing “good” from “bad” or “unhealthy” moves could really be worth it, leading to a
motivating digital training assistant.

5.2 Outlook: Suggestions for the Deployment onto a Concrete System

The following indications have solely arisen from the whole evaluation process described above and have
not been tested further on any prototype implementation.

As both the sliding window approach for getting the mean-variance feature vectors and the peaks detec-
tion algorithm are not highly complex, they should directly run on the sensors. This could help reducing
the amount of data as well as the frequency rate the sensors have to send to the mobile device, because
for every axes only the mean, the variance and the counted number of peaks within the last window
need to be sent instead of the whole acceleration measurements. A window size of 4 seconds should still
be small enough for limited memory and computation resources, and clearly more energy-saving than
sending more data at a higher frequency rate.

The concrete classification of the performed exercise and the selection of the dominating axes for the
repetition counting could then be left to the mobile device, as much more hardware resources are needed
for this process. In a first step, the mean-variance feature vector should be classified by assigning it to
the nearest cluster centroid (those have to be set up once as it was done in Section 3.1). Since the
assigned cluster determines the most likely activity, this knowledge can be used afterwards to count the
movements within the last window by selecting only the sent number of peaks along the relevant axes
for that specific activity (according to the results from Section 3.2).
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A Pictures of the Different Activities on Both Tracks

(a) back stretching (b) diagonal hand to
foot moving

(c) pull-ups

(d) abdominals (e) alternate one-leg
bench jumps

(f) torso turns

(g) squats (h) push-ups

Figure A.1.: Exercises in Roßdorf

29



(a) back stretching (b) diagonal hand to foot mov-
ing

(c) pull-ups

(d) abdominals (e) alternate one-leg
bench jumps

(f) torso turns

(g) squats

(h) push-ups

Figure A.2.: Exercises in Darmstadt
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B Visualization of the counted repetitions with the detected peaks

(a) back stretching

(b) diagonal hand to foot moving

(c) abdominals

Figure B.1.: Visualization of the counted repetitions with the detected peaks for each activity in Roßdorf
(part 1)
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(a) torso turns

(b) squats

(c) push-ups

Figure B.2.: Visualization of the counted repetitions with the detected peaks for each activity in Roßdorf
(part 2)
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(a) back stretching

(b) diagonal hand to foot moving

(c) abdominals

Figure B.3.: Visualization of the counted repetitions with the detected peaks for each activity in Darm-
stadt (part 1)
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(a) torso turns

(b) squats

(c) push-ups

Figure B.4.: Visualization of the counted repetitions with the detected peaks for each activity in Darm-
stadt (part 2)
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