
Looking into the Past: Enhancing Mobile

Publish/Subscribe Middleware

by

Pablo Ezequiel Guerrero

Submitted to the

Departamento de Computación y Sistemas

Facultad de Ciencias Exactas

in partial fulfillment of the requirement for the degree of

Systems Engineer

(Major in Computer Science)

at the

Universidad Nacional del Centro de la Provincia de Buenos Aires

Thesis Supervisor: Mariano Cilia

Date: September, 2004

2004, Tandil, República Argentina





Acknowledgements

First of all I would like to thank my advisor Prof. Dr. Mariano Cilia for his invaluable help and
advice. His guidance during my stay at Darmstadt, Germany, was of great importance to me. He
did not only introduce me to the distributed systems world, but enormously helped me to prepare
for a career in research.

Second, I want to thank and express my great appreciation for the support and funding from the
Databases and Distributed Systems Group, as well as from the Technische Universität Darmstadt
(TUD). This funding allowed me to visit Germany, a country where technology occupies an impor-
tant place and is fortunately applied, which enabled me to start my thesis work very motivated.

I want to thank the people at the DVS Group, particularly to Alejandro Buchmann, Patric Kabus,
Samuel Kounev, Ludger Fiege, Andreas Zeidler, Christian Haul, Matthias Meixner and Marion
Braun. They supported me in different ways from getting to know the TU-D to develop very
particular aspects of my work.

Special thanks go to Mario and José Antollini. They have not only been the best colleagues in
the most important parts of the universitary career at the UNICEN, but also big pals in my daily
student life at Tandil during the last years.

I also would like to thank to Jane Pryor and Claudia Marcos from the ISISTAN Institute for the
time spent with discussions about Aspect Oriented Software Development.

The best thanks go to my family. My parents José Luis and Martha were, are and will always
be my best advisors and teachers. My father’s perseverance encouraged me to aim high and work
hard, whereas my mother’s continuous love and support allowed me to concentrate in the career
without forgetting what really matters. Obviously I also want to thank my sister Mariel for her
just-so-cool support.

Last, but not least, I want to thank my woman Luciana. Her unconditional love has always inspired
me to be a better individual. She supported me since the beginning of our relationship by traveling
thousands of times to get together, and her awesome support during my stay at Germany is simply
something I’ll never forget.

i



ii



Abstract

Nowadays we are experiencing a convergence of technologies that results in an explosion of infor-
mation. This phenomenon requires new paradigms for adequate data and information management
and processing. The World Wide Web is a huge source of information that was conceived for inter-
active search by humans. To exploit the Web in a mode other than human browsing confronts us
with the need for filtering and interpreting a large amount of heterogeneous and often short-lived
data. The deployment of smart devices requires the continuous monitoring of events as well as the
appropriate context information to interpret them properly. The miniaturization of sensors and
their ubiquitous deployment will result in massive amounts of sensor signals that must be processed,
often in real time. Huge distributed systems must be capable of detecting and correcting failures
and return autonomously to stable operation. New business strategies, such as event-driven supply
chain management and zero-latency enterprises, depend on the timely dissemination of information
and business events.

Common to the above is that signals and data, which we abstract into the notion of events and
event notifications, will flow from producers to consumers. When dealing with event streams our
traditional, pull-based, request/reply access mechanisms to stagnant data do no longer work [16].

There is a fundamental difference between traditional applications and the scenarios described
when analyzing the information space and its interactions [14]. In the well-known request-reply
interaction pattern (pull-based), the interaction is initiated by the client or consumer of information
and the request is directed at a specific server or information provider (who provides the informa-
tion). On the other hand, when the information flows, the interaction is started by the producer
of the information (push-based). If the producer knows the identity of its counterpart, we have
a classical messaging interaction. However, if the producer does not know the consumer a priori,
we have the typical event-based interaction that depends on a mediator or broker to connect the
interested parties, frequently called middleware.

These new interaction patterns found on previously described emergent applications require an
adequate treatment through appropriate mechanisms. These must be based on an infrastructure
that is able to support a growing information flow, generated by a huge quantity of interconnected
devices, services and applications with different capabilities that will react and automate processes
on our behalf. Streaming events must be detected, interpreted, aggregated, filtered, analyzed, and
reacted to interesting situations based on the information flow.

Together, the emergence of mobile computing has opened a whole new set of services for the ben-
efit of the mobile user. A convenient way to build these systems is using event-based infrastructures,
particularly with publish/subscribe middleware. These systems provide asynchronous communica-
tions, naturally decouple producers and consumers, make them anonymous to each other and allows
a dynamic number of publishers and subscribers. It also provides support for roaming clients, e.g.,
to bridge phases of disconnection, and a notion of location tailored for efficient location-dependent
information delivery.

One of the problems that many publish/subscribe applications must deal with is found in their
runtime startup. These applications have to be bootstrapped to correctly interpret the current flow
of notifications and commence normal operation. This problem is aggravated in mobile environ-
ments where disconnections and context changes occur frequently, basically to adapt the application
to current contextual information which is only available locally. This initial stage is what we call

iii



the bootstrapping sequence, and the time it takes is called bootstrapping latency. Before this stage
is finished an application might not be able to work properly. This work concentrates in enhancing
the mobile pub/sub middleware by reducing the bootstrapping latency.

This thesis comprises a theoretical and a practical part. The theoretical part starts by intro-
ducing the reader into distributed systems, information-driven applications, mobile computing and
publish/subscribe systems. Then we return to the stated problem by describing a generic approach
to confront it. Given distinct requirements that the generic solution must overcome, we proceed
by further analyzing several strategies that solve the problem in different ways. The practical part
focuses first in the design and implementation issues of the analyzed strategies; and then moves
into a practical evaluation of the implementation based upon the prototype.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Goals and Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Issues not Addressed in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Middleware for Mobile Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Information-driven Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Publish/Subscribe Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Addressing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Publish/Subscribe Systems with Advertisements . . . . . . . . . . . . . . . . 12

2.5 The Rebeca Notification Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Routing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Proposed Approach 17
3.1 Scenario Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Proposed Approach Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Caching Strategies: Analysis 21
4.1 Caching Strategies Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Caching in Event-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Notifications Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Cache Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Local Broker Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Border Broker Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Merging Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.4 Caching with more complex Routing Algorithms . . . . . . . . . . . . . . . . 38
4.4.5 Caching with Advertisements . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.6 Considering the Time Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



5 Caching Strategies: Design and Implementation 45
5.1 Architectural approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 The OOP way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 The AOP way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Design and Implementation with AOP . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Caching Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Generic Behavior: Notification Storage . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Specialization of the Framework . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Caching Strategies: Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Packaging with Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Plug-and-Play Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Experimental Results 67
6.1 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Broker Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Characteristics of the consumers . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.3 Characteristics of the producers . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.4 Characteristics of the subscriptions and events . . . . . . . . . . . . . . . . . 69

6.2 Caching Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.1 Local Broker Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Border Broker Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.3 Merging Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.4 Strategies Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Conclusions and Future Work 77
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Aspect Oriented Software Development 81
A.1 Aspect-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 AspectJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2.1 Joinpoints and Pointcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.3 AOP and UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



List of Figures

1.1 Traditional approach for application bootstrapping . . . . . . . . . . . . . . . . . . . 2
1.2 Adaptation of the bootstrapping phase. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Example of a distributed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The ISO/OSI Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Publish/Subscribe systems architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Large Scale Publish/Subscribe systems architecture . . . . . . . . . . . . . . . . . . . 10
2.5 Channel-based Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Subject-based Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Rebeca architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 UML use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Scenario classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Extending the pub/sub interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 New subscribtion behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Buffering structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Buffering structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 UAG components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Flooding behavior: initial deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Flooding behavior: subscription update . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Flooding behavior: notification forwarding . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Flooding behavior with Local Broker Caching . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Simple Routing behavior: initial deployment . . . . . . . . . . . . . . . . . . . . . . . 31
4.9 Simple Routing behavior: subscription update . . . . . . . . . . . . . . . . . . . . . . 32
4.10 Simple Routing behavior: notification forwarding . . . . . . . . . . . . . . . . . . . . 32
4.11 Simple Routing behavior with Border Broker Caching . . . . . . . . . . . . . . . . . 32
4.12 Border Broker Cache Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.13 Multiple producers scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.14 Merging Caching deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.15 Covering-based Routing: initial deployment . . . . . . . . . . . . . . . . . . . . . . . 38
4.16 Covering-based Routing: subscription forwarding (1) . . . . . . . . . . . . . . . . . . 38
4.17 Covering-based Routing: subscription forwarding (2) . . . . . . . . . . . . . . . . . . 39
4.18 Simple Routing with Advertisements: initial deployment . . . . . . . . . . . . . . . . 40
4.19 Simple Routing with Advertisements: advertisement forwarding . . . . . . . . . . . . 41
4.20 Simple Routing with Advertisements: subscription forwarding . . . . . . . . . . . . . 41
4.21 Notification Service possible configurations . . . . . . . . . . . . . . . . . . . . . . . 43

vii



5.1 Rebeca’s routing class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 The Decorator design pattern approach . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 UML Use Case diagram involving the Caching aspect . . . . . . . . . . . . . . . . . 49
5.4 High level architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Pointcut to create CachingStrategy objects . . . . . . . . . . . . . . . . . . . . . . 51
5.6 Pointcuts to pass the RoutingTables to CachingStrategy objects . . . . . . . . . . 52
5.7 Pointcut to pass the neighbor EventProcessor’s collection to CachingStrategy ob-

jects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 Pointcut to intercept subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.9 Pointcut to intercept unsubscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.10 Pointcut to intercept event processing . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.11 Pointcut for subscriptions and unsubscriptions forwarding . . . . . . . . . . . . . . . 54
5.12 Pointcut for event destination selection . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.13 Pointcut to initialize a RoutingEntry object . . . . . . . . . . . . . . . . . . . . . . 56
5.14 Pointcut to initialize many RoutingEntry objects . . . . . . . . . . . . . . . . . . . 57
5.15 The Caching aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.16 The BoundedSubscription aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.17 The HeldRoutingEntry aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.18 The EventCache and EventQueue classes . . . . . . . . . . . . . . . . . . . . . . . . 60
5.19 The CachingStrategy class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.20 UML package diagram extended for aspects . . . . . . . . . . . . . . . . . . . . . . . 63
5.21 Aspect visualizer weaving points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Broker topology with 4 levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Local Broker Caching Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Border Broker Caching Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Merging Caching Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Caching Strategies Comparative Evaluation (1) . . . . . . . . . . . . . . . . . . . . . 73
6.6 Caching Strategies Comparative Evaluation (2) . . . . . . . . . . . . . . . . . . . . . 74

7.1 Schematic view of the enhanced notification service . . . . . . . . . . . . . . . . . . . 78

viii



List of Tables

5.1 Specification of the crosscutting concern Caching . . . . . . . . . . . . . . . . . . . . 48

6.1 Fixed an varied parameters of the setup . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



x



List of Pseudocodes

4.1 Buffering Structure Data Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Processing of a message m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Processing of a subscription’s filter F . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Processing of an unsubscription’s filter F . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii



Chapter 1

Introduction

1.1 Motivation

Nowadays we are experiencing a convergence of technologies that results in an explosion of infor-
mation. This phenomenon requires new paradigms for adequate data and information management
and processing. The World Wide Web is a huge source of information that was conceived for inter-
active search by humans. To exploit the Web in a mode other than human browsing confronts us
with the need for filtering and interpreting a large amount of heterogeneous and often short-lived
data. The deployment of smart devices requires the continuous monitoring of events as well as the
appropriate context information to interpret them properly. The miniaturization of sensors and
their ubiquitous deployment will result in massive amounts of sensor signals that must be processed,
often in real time. Huge distributed systems must be capable of detecting and correcting failures
and return autonomously to stable operation. New business strategies, such as event-driven supply
chain management and zero-latency enterprises, depend on the timely dissemination of information
and business events.

Common to the above is that signals and data, which we abstract into the notion of events and
event notifications, will flow from producers to consumers. When dealing with event streams our
traditional, pull-based, request/reply access mechanisms to stagnant data do no longer work [16].

There is a fundamental difference between traditional applications and the scenarios described
when analyzing the information space and its interactions [14]. In the well-known request-reply
interaction pattern (pull-based), the interaction is initiated by the client or consumer of information
and the request is directed at a specific server or information provider (who provides the informa-
tion). On the other hand, when the information flows, the interaction is started by the producer
of the information (push-based). If the producer knows the identity of its counterpart, we have
a classical messaging interaction. However, if the producer does not know the consumer a priori,
we have the typical event-based interaction that depends on a mediator or broker to connect the
interested parties, frequently called middleware.

These new interaction patterns found on previously described emergent applications require an
adequate treatment through appropriate mechanisms. These must be based on an infrastructure
that is able to support a growing information flow, generated by a huge quantity of interconnected
devices, services and applications with different capabilities that will react and automate processes
on our behalf. Streaming events must be detected, interpreted, aggregated, filtered, analyzed, and
reacted to interesting situations based on the information flow.

Together, the emergence of mobile computing has opened a whole new set of services for the ben-
efit of the mobile user. A convenient way to build these systems is using event-based infrastructures,
particularly with publish/subscribe middleware. These systems provide asynchronous communica-
tions, naturally decouple producers and consumers, make them anonymous to each other and allows
a dynamic number of publishers and subscribers. It also provides support for roaming clients, e.g.,
to bridge phases of disconnection, and a notion of location tailored for efficient location-dependent
information delivery.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

Developers must face many problems when designing distributed event-based applications. One of
these problems is found at the application’s runtime startup. Basically, these applications require an
initial phase to correctly interpret the current flow of notifications and commence normal operation.
This phase, also known as bootstrapping phase, is necessary in order to bring the application into a
consistent state. The time involved in performing this phase is called bootstrapping latency and it
is assumed that before this task is finished an event-based application might not be able to work
properly. There are two possibilities to perform a bootstrapping: a) get the current state from a
server (if there is such a server and if the applications knows it); or b) consume/observe notifications
until the bootstrapping phase is completed. The first case combines both paradigms (request/reply
and pub/sub) while the second is a pure pub/sub approach.

In Figure 1.1 we illustrate the problem. In this stage the application subscribes to the user’s
interests. But since the application needs some notifications before correctly interpreting the current
flow of notifications (shown with the arrival of the meaningful event in the figure), the application
could remain waiting or even blocked.

time

application
subscription

starts

latency
meaningful

event

point of bootstrapping
initiation

Evnt
Evnt

Evnt Evnt
Evnt Evnt Evnt

Evnt

Figure 1.1: Traditional approach for application bootstrapping

For instance, lets imagine a notification service where several enterprise applications are used to
manage exchange values for different currencies. Scenarios like this are very realistic in our country
these days. On one hand, organizations like banks, financial services corporations, foreign currency
exchange offices, etc., use this service to publish their exchange rate values. Each organization,
in turn, might have several brokers authorized to publish new values according to economical
trends or other parameters. On the other hand, companies which regularly perform their currency
exchange at these organizations benefit with the usage of this service. For example, in order to not
loose money, a given wholesaler enforces their salesmen to use the information provided by these
organizations when they emit goods orders. Each salesman runs an application in its laptop, PDA
or even mobile phone, which they use to subscribe to whatever currencies they are interested in
(according to their assigned clients). As it can be seen, only the last published value of the exchange
rate is needed in this scenario. But, until the new exchange rate value is published, the application
will display a null or useless value. Furthermore, the salesman is constantly visiting different clients,
implicitly re-initializing the subscription process (in order to update the notification service about
its new position), hence incurring in this problem for each location.

An alternative solution to this problem could be enforcing each organization to publish the last
value at fixed intervals, even if the value didn’t change. This could effectively bound the waiting
time for an initial response. Though, this approach is not always appropriate. Lets imagine another
situation within this example where an application wants to build a chart that is a function of the
last 10 values of a certain currency exchange rate. Till this amount of values are not available, the
application may not work correctly or may show undesired results. In comparison with the other
scenario, periodically publishing the last 10 values is not appropriate because it changes the seman-
tics of the published information order. Another application would get confused if it is interested
in displaying the last 20 values.



1.3. PROPOSED APPROACH 3

As it was shown with the former example, this problem is aggravated in mobile environments.
Disconnections and context changes occur frequently, basically to adapt the application to current
contextual information which is only available locally (we will describe this situations further in
section 2.2). In pervasive scenarios, where applications rely on location-dependent information, the
fact is that whenever a client reaches a new location (context switch), a new bootstrapping phase
must be initiated. In such settings, location-dependent information is required in order to bootstrap
location-aware applications. This situation is not an isolated occasion as pervasive environments
are characterized by a rather dynamic behavior including mobility and context switches.

The asynchronous and data driven nature of the pub/sub paradigm prevents an application
to make assumptions about the time it will take before notifications required for bootstrapping
are published. For instance, when a mobile client spontaneously appears in a new location, it
cannot rely on notifications being published as soon as it enters. In this kind of scenario, system
responsiveness is not only degraded, but the time window in which a client application can actively
“listen” is naturally constrained by the duration it stays at this particular location.

1.3 Proposed Approach

This work concentrates in enhancing the mobile pub/sub middleware by reducing the bootstrap-
ping latency. Based on the assumption that a consumer is initialized by a sequence of notifications,
recently published notifications are delivered to consumers on bootstrapping phase. These notifi-
cations are used to minimize the bootstrapping latency as showed in Figure 1.2. As an example we
go back to the currency exchange rate scenario: here, some users could suffice themselves with the
last value, while considering that the rate may have varied a few points. Other client applications
like the one used to generate a chart as a function of the last published values need more than one
notification, regardless if they were created yesterday, as long as they are the last.

Figure 1.2: Adaptation of the bootstrapping phase.

This new quality of service (QoS) can be achieved by extending the pub/sub system to store
recently published notifications in its infrastructure. Particularly in this thesis we enhance an
already developed pub/sub notification service (described later in more detail in section 2.5). Hence,
an important goal is to minimize the amount of changes on the underlying system code. As we will
see, the notification service is composed of a network of cooperative brokers. Thus integrating the
caching ability and querying those caches is not straightforward.

An adequate way to support dynamic scenarios (i.e., fixed distributed systems with high sub-
scriptions and unsubscriptions rate and/or mobile computing) is to store the notifications in caches
distributed in the network. This approach effectively offers a way to integrate data repositories into
the network. There are several ways to integrate and query these repositories. This work explores
and analyzes some alternatives and strategies and also provides a detailed practical evaluation of
them.



4 CHAPTER 1. INTRODUCTION

1.4 Goals and Contributions of this Thesis

The focus of this thesis is on enhancing mobile publish/subscribe notification services in order to
reduce the bootstrapping latency that information-driven applications suffer. The foundation of
this work is a publication of A. Buchmann, M. Cilia, L. Fiege, C. Haul and A. Zeidler (the reader
is referred to [12]), which sketched the first steps of the present thesis. The work has been divided
up into a theoretical and a practical part.

The theoretical part deals with the reasoning of feasible caching strategies that might be used
within a notification service deployment. Caching is a fundamental concept and widely known
technique and it is applied in many areas like Operating Systems, Databases, etc. It is used, for in-
stance, to speedup page translations, memory locations, file blocks or network routes. On the other
hand, event-based systems are no longer only a research field: there are commercial applications
in use since the last two decades. Nevertheless, we are not aware of event-based infrastructures
which provide support for mobile pub/sub applications facing the described problem. Therefore, in
this work this problematic is carefully investigated and developed. Finally, recommendations are
pointed out on how to select and combine the caching strategy with its main counterpart, that as
we will see, is the routing algorithm.

The practical part describes the implementation that supports the caching functionality as
an add-on of the Rebeca notification service. The explicit contribution in this regard is the
specification, design, implementation and corresponding evaluation of a model that allows several
strategies to be used.

1.5 Issues not Addressed in this Thesis

First, we make a clear distinction between devices’ mobility and code mobility. The latter is an
innovative approach based on the ability to migrate code (instead of data) across the nodes of a
network, in order to provide a higher level of configurability, scalability, and customizability to the
distributed applications [17]. As an emerging research field, code mobility is generating a growing
body of scientific literature and industrial developments. We concentrate on mobility of devices as
a research issue, while the latter (code mobility) is out of the scope of this thesis.

The second issue not addressed is the support for mobile information production. As described
later in Section 3.1, this could be handled with the Sensor Networks approach. Wireless Sensor
Networks (WSN) are envisioned to fulfill complex monitoring tasks in the near future. A typical
WSN application like object tracking fuses sensor readings produced by nodes throughout the
network to obtain a high-level sensing result such as the current speed of a tracked vehicle.

1.6 Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, a background on the building
blocks of this work are described. Of great interest is the introduction to information-driven
applications, as well as the infrastructure necessary to support these applications, in general, and
the Rebeca notification service, in particular. In Chapter 3, the proposed approach is exposed
by further classifying the scenarios and analyzing where this work points to. Chapter 4 starts
by dictating the overall requirements that caching strategies must obey, then it highlights the
differences between traditional caching and caching in event-based systems. The focus of this
chapter is to develop several caching strategies, starting from the simplest possible scheme. In
Chapter 5, the mapping of these strategies into the design and implementation is pointed out.
Chapter 6 presents a practical evaluation that has been carried out by using the implemented
notification service infrastructure enhancements. Chapter 7 concludes this work and sketches
areas of future work.



Chapter 2

Background

In this chapter we intend to provide a background in order to understand the context of the work.
The first section starts by introducing the reader into the distributed systems area. Then we move
into a more specific issue that is the middleware for mobile computing, which settles a ground
to base our reasonings and decisions of the following chapters. Next, we illustrate how several
scenarios can be grouped in their own type, so-called information-driven applications. Finally,
the publish/subscribe systems are presented as the first choice for implementing such applications.
Particularly, the Rebeca notification service architecture is presented as the infrastructure where
enhancements will be developed.

2.1 Distributed Systems

A distributed system consists of a collection of components distributed over various computers
(also called hosts) connected via a computer network. These components need to interact with
each other, in order, for example, to exchange data or to access each other’s services. Figure 2.1
illustrates an example of a distributed system.

Comp_1    ......     Comp_N

Middleware

Network Operating System

Hardware

Host a

Comp_1    ......     Comp_M

Middleware

Network Operating System

Hardware

Host c

Comp_1    ......     Comp_L

Middleware

Network Operating System

Hardware

Host b

Network

Figure 2.1: Example of a distributed system

Building distributed applications directly on top of the network layer would be extremely tedious
and error-prone. Application developers would have to deal explicitly with all the non-functional
requirements of these applications. Although this interaction may be built by calling network
operating system primitives, this would be too complex for many application developers. Instead,
a middleware is layered between distributed system components and network operating system
components. Middleware implements the Session and Presentation Layer of the ISO/OSI Reference
Model (see Fig. 2.2). Its main goal is to enable communication between distributed components. To
do so, it provides application developers with a higher level of abstraction built using the primitives
of the network operating system. During the past years, middleware technologies for distributed

5



6 CHAPTER 2. BACKGROUND

systems have been built and successfully used in industry, for example, object-oriented technologies
like OMG CORBA, Microsoft COM and Sun Java/RMI-IIOP, or message-oriented technologies like
IBM MQSeries and TIB/Rendezvous.

Application

Presentation

Session

Transport

Network

Data link

Physical

Figure 2.2: The ISO/OSI Reference Model

The previously given definition of distributed system applies to both fixed and mobile systems.
Nevertheless, many differences exist between these two that are explored in the following section.

2.2 Middleware for Mobile Computing

Recent advances in wireless networking technologies and the growing success of mobile comput-
ing devices such as laptop computers, third generation mobile phones, personal digital assistants
(PDAs), watches and the like are enabling whole new classes of applications. However, the require-
ments of the middleware these applications make use of are very different from those requirements
for fixed distributed systems. In order to understand these differences, [26] extrapolated three
concepts hidden in the definition of Distributed Systems that greatly influence how to implement
middleware for mobile computing: the concept of device, of network connection and of execution
context. This comparison will then allow us to reason on solutions to our problem on both envi-
ronments.

• Type of Devices:

Fixed: Varying from home PCs, to Unix workstations, to mainframes: Generally powerful
machines, with large amount of memories and very fast processors.

Mobile: Varying from PDAs, to mobile phones, to smartcards: limited capabilities, like
slow CPU speed, scarce memory, low battery power and small screen size.

• Type of Network Connection:

Fixed: Usually permanently connected to the network through continuous high-bandwidth
links. Disconnections are either explicitly performed for administrative reasons or are caused
by unpredictable failures. These failures are considered sporadic and therefore treated as
exceptions to the normal behavior of the system.

Mobile: Connectivity to the Internet is possible via wireless local area network protocols,
such as WaveLAN. These protocols may achieve reasonable bandwidth if the hosts are within
reach of a few hundred meters from their base station. But as all different hosts in a cell share
the bandwidth, when they grow in quantity, the bandwidth rapidly drops. Moreover, if the
hand-held devices are moved to an area with no coverage or with high interference, bandwidth
may suddenly drop to zero and the connection may be lost. Unpredictable disconnections
cannot be considered as an exception any longer, but they rather become part of normal
wireless communication. Wide area wireless network protocols, such as GSM, have a broader
coverage but provide bandwidth that is smaller by order of magnitude than the one provided
by fixed network protocols (e.g., 9,600 baud against 100Mbps). Also, GSM charges the
users for the period of time they are connected; this pushes users to patterns of short time



2.3. INFORMATION-DRIVEN APPLICATIONS 7

connections. Either because of failures or because of explicit disconnections, the network
connection of mobile distributed systems is typically intermittent.

• Type of Execution Context: With context, we mean everything that can influence the behavior
of an application; this includes resources internal to the device, like amount of memory, screen
size, etc., and external resources, like bandwidth, quality of the network connection, location,
nearby hosts (or services), and so on.

Fixed: More or less static. Bandwidth is high and continuous, location almost never
changes, hosts can be added, deleted or moved, but this happens infrequently as they are big,
heavy and expensive. Services may change as well, but the discovery of available services is
easily performed by forcing service providers to register with a well-known location service.

Mobile: Highly dynamic. Hosts may come and leave rapidly, and the services that are
available when clients disconnect from the network may not be there anymore when they
reconnect. Service lookup is much more complicated in the mobile scenario, specially if there’s
a complete lack of a fixed infrastructure This is why clients cannot assume any knowledge
about the configuration of the context, particularly the identity of any default server to
contact for a service lookup operation. Location is no longer fixed: the size of wireless devices
has shrunk so much that most of them can be carried in a pocket and moved around easily.
Depending on where the clients are and if they’re moving, bandwidth and quality of the
network connection could vary greatly as well.

2.3 Information-driven Applications

Although the architecture of current large-scale, networked computer systems is dominated by
synchronous client/server platforms (e.g., the World Wide Web, CORBA, J2EE, and COM+), a
large range of applications cannot be realized efficiently by using the request/reply paradigm. For
instance, consider the scenario where an automated stock trading program monitors stocks and
bases its decisions to sell or buy certain stocks on current real-time quotes. If this program is
realized using request/reply, it has to periodically retrieve the current quote of a specific stock
by requesting it from a quoting server. Each time communication and processing cost would be
incurred, and in many cases no new information is delivered. This approach is called polling. Polling
leads to resource waste because it unnecessarily saturates the servers, the network, and the clients.
This not only impedes scalability, in a large-scale system, it may even lead to a total breakdown of
the network connections or the server itself. Polling is also inappropriate for applications that run
on mobile devices (e.g., PDAs). These devices are especially susceptible to resource waste because
of their limited processing power and network bandwidth.

In this example, it is important that quote updates are available to the trading program with
minimum latency and that no quote updates are missed. Both requirements can only be met
using a high polling frequency. Hence, data freshness and completeness are inconsistent with
a low data fetching overhead. Moreover, synchronous polling blocks the client until the reply
arrives. This means that multiple polling requests (e.g., for different stocks) either have to be
executed sequentially or error-prone multi-threaded polling must be used. The same would be true
if multiple data sources (e.g., different stock exchanges) were involved. As another examples we
can enumerate:

• Enterprise Applications which keep the user/application up-to-date with

Auction processes’ current state

Stock Quote values

Real-Estate offerings

Currency Exchange rates



8 CHAPTER 2. BACKGROUND

• Driver support

Malfunctions of my car

Traffic jams

Nearby Gas Stations

Parking spaces

• Infotainment support

Coming TV shows related to Snakes, Crocodiles, etc.

Weekend activities in my city/region

• News Delivery, i.e.

Results of NBA → LA Lakers playoffs

Terrorism or suicide attacks

• Travel/Turist support

Nearest Tourist Info Center

Nearby Hotels

These examples are not in any way exceptions but rather examples of typical information-driven
applications, in which information provided by a service depends on information supplied by other
services. Realizing such applications using request/reply will always lead to implementations that
do not scale and provide data that is inaccurate and probably incomplete. These problems are
approached by a new communication paradigm called publish/subscribe (pub/sub) that recently
gained increased publicity in the distributed systems research area.

2.4 Publish/Subscribe Systems

A pub/sub system consists of a set of clients that asynchronously exchange notifications, decoupled
by a notification service that is interposed between them. Clients can be characterized as producers
or consumers. Producers publish notifications, and consumers subscribe to notifications by issuing
subscriptions, which are essentially stateless message filters. Consumers can have multiple active
subscriptions, and after a client has issued a subscription the notification service delivers all future
matching notifications that are published by any producer until the client cancels the respective
subscription. Data is proactively disseminated (to interested consumers) when it is produced placing
in that way a continuous query on produced information. In this thesis it is assumed that producers
and consumers are implemented in a way such that they publish and subscribe to the intended events
as required by the application.

Publish/subscribe systems have a number of interesting characteristics, as we enumerate next:

1. Producers do not need to directly address consumers and vice versa. Instead, consumers sim-
ply specify the notifications they are interested in. This loosely coupled approach facilitates
flexibility and extensibility because new consumers and producers can be added, moved, or
removed easily.

2. The quantity of producers and consumers can be dynamically determined. This enhances the
flexibility by allowing clients to evolve without disrupting the existing system.

3. Communication is asynchronous, thereby removing the disadvantages and inflexibility of syn-
chronous communication previously mentioned.



2.4. PUBLISH/SUBSCRIBE SYSTEMS 9

4. Producers and consumers do not need to be available at the same time. This means that a
subscription causes notifications to be delivered even if producers join after the subscription
was issued.

5. Publish/Subscribe directly reflects the intrinsic behavior of information-driven applications
because communication is initiated by producers of information.

The benefits of pub/sub make them first choice for implementing information-driven applica-
tions. For example, publish/subscribe is well suited for information dissemination applications like
news delivery, stock quoting, air traffic control [25], and dissemination of the state of auction pro-
cesses [8]. The use of publish/subscribe techniques has also been described in the areas of mobile
agents [33], workflow systems [13], ubiquitous computing [24], peer-to-peer systems [20], and pro-
cess control systems [22]. Its use was even proposed for loose coupling of components [7] or several
independent distributed applications.

2.4.1 System Structure

In order to start understanding the proposed enhancements, a traditional pub/sub system is char-
acterized. The basic event system’s architecture is depicted in Figure 2.3. According to [6], it cor-
responds to an independent processes, data-flow architectural style. The components shown consist
of a message manager or notification service (aPublishSubscribeSystem) and clients. These in
turn can indistinctively be subscribers of the information (aConsumer), publishers (aProducer), or
both at the same time (aConsumerNProducer). The connectors between these components are the
communication links between them. This scheme’s dynamic behavior allows the following interac-
tions: A consumer registers its interests by subscribing itself with the notification service, using
some expression as a message Filter. When a producer publishes a new Event, the notification
service forwards the message to the interested clients by notifying them. Finally, when a consumer
is no longer interested in being notified about a subscription he has registered, he can unsubscribe.

:aPublishSubscribeSystem

:aConsumer1

:aConsumer2

:aProducer1

:aProducer2

:aConsumerNProducer

:aProducer3

subscribe(F )2

notify(E )1

publish(E )1

unSubscribe(F )3

Figure 2.3: Publish/Subscribe systems architecture

The requirements can be demanded for a pub/sub system as follows:

• notifications should be delivered only to clients who have at least one matching active sub-
scription.

• all notifications matching an active subscription should be delivered to the respective client.

• each notification should be delivered to a client at most once.



10 CHAPTER 2. BACKGROUND

:aConsumer1 :aProducer1 :aConsumerNProducer

:aProducer3

:aBroker1

:aBroker2

:aBroker3
:aBroker4

:aConsumer2

home stub home stub

:aProducer2

home stub

home stub home stubhome stub

notification service boundary

Figure 2.4: Large Scale Publish/Subscribe systems architecture

• notifications should be delivered in some order with respect to their publication (particularly,
in a per-producer FIFO order basis).

Figure 2.3 gives a conceptual view or black box view of the interface of a pub/sub system. Never-
theless, in practice, scalable implementations of large pub/sub notification services are distributed.
Hence, in a more detailed, white box view of the system structure, the pub/sub component of Figure
2.3 is decomposed into a network of decentralized brokers. These brokers conform a (connected)
graph, as shown in Figure 2.4. The network’s brokers route the subscriptions, unsubscriptions and
events from the producers, across a set of brokers, and into the interested consumers of the infor-
mation using one of several different routing algorithms (which are explained in 2.5.2). Further,
each client of the notification service is composed of the application itself and a stub that provides a
local interface to the pub/sub system where to delegate the operations that the notification service
offers. This stub acts as a client-side proxy and is provided by the infrastructure itself in the form
of a class library.

2.4.2 Addressing Models

Publish/Subscribe naturally decouples producers and consumers of messages. This is achieved
by providing interaction mechanisms that hides physical locations (i.e., network address, socket
number, server identity). In this section we describe the existing options to address messages, as
well as known related software products that implement these options.

The option adopted by the first generation of pub/sub systems is called Channel-based address-
ing model. A channel is used to communicate producers with consumers. Messages were published
to a specific channel by producers and delivered to all consumers that had subscribed to it. Chan-
nels allow efficient data delivery, but the subscription expressiveness is limited. In the illustration
of Fig. 2.5, an example where sport news are delivered from producers to consumers by means of
a channel is shown. In CORBA, a primitive event service was introduced to provide a mechanism
for asynchronous interaction between CORBA objects. Here, an event channel acts as a mediator
between suppliers and consumers of events. To overcome deficiencies of this service specification,
the notification service [30] was proposed as a major extension with support for quality of service
specifications and basic event filtering.

In the second alternative a subject is associated to each message [31]. Subject names consists
of one or more elements (usually a string) organized in a tree by a means of a dot notation. This



2.4. PUBLISH/SUBSCRIBE SYSTEMS 11

:aConsumer1

:aConsumer2

:aConsumer3

:aProducer1

:aProducer2

notification service boundary

sports channel

Figure 2.5: Channel-based Addressing

model is denominated Subject-based addressing, and features a set of rules that defines a uniform
name space for messages and their destinations. This approach is inflexible if changes to the subject
organization are required frequently, implying fixes in all participant applications.

The Java Message Service (JMS) provides the Java technology platform with the ability to
process asynchronous messages. JMS was originally developed to provide a common Java interface
(API) to legacy Message Oriented Middleware (MOM) products like IBM MQ-Series (called today
WebSphere MQ) or TIB/Rendezvous. In this way, the JMS API provides portability of Java code
allowing the underlying messaging service to be replaced without affecting existing code. JMS pro-
vides two models for messaging among clients: point-to-point, which corresponds to Channel-based
addressing using queues; and publish/subscribe, which corresponds to Subject-based addressing us-
ing topics with some enhancements. Under the topic model, consumers not only subscribe to a
channel but can also specify additional boolean predicates by means of a restricted set of SQL
WHERE expressions [19].

:aConsumer1 :aConsumer2 :aConsumer3

notification service boundary

:aProducer2:aProducer1

subscribes
news.sports.*

subscribes
news.finance.stocks.SUNW

subscribes
news.>

news.sports.

basketball

{symbol=SUNW;
price=10}

news.finance.

stocks.SUNW
{sport=basketball;

team1=Lakers;
team2=Sixers;
result=108-96}

Figure 2.6: Subject-based Addressing

In Figure 2.6, two producers are shown while they’re publishing messages. Notice that each
message has its corresponding subject, symbolized here using tags/labels. Subscriptions are carried
out using the subject name space organization where wildcards can be used to specify consumers
interests. For instance, aConsumer1 subscribes to all sports news (by means of news.sports.*);
aConsumer2, to all kinds of news (news.>); and aConsumer3 subscribes specifically to the stock
prices of SUNW (news.finance.stocks.SUNW). After producers publish their messages (as de-
picted in the figure), aConsumer1 receives one notification with the result of a basketball game,
aConsumer3 receives a notification related to the stock price of SUNW, and aConsumer2 receives



12 CHAPTER 2. BACKGROUND

both notifications.

The third approach was proposed in order to improve the expressiveness of the subscription
model. The Content-based addressing model allows subscriptions to evaluate the whole content of
notifications, thus it provides a more powerful and flexible notification selection than Channel- or
Subject-based mechanisms, for which the actual content of a notification is opaque. The increase in
expressiveness allows the delivery of uninteresting notifications to be reduced or even to be avoided.
In particular, this is important for applications that run on mobile devices having limited processing
power and network bandwidth. This approach is more flexible, but requires a more complex
infrastructure [9, 10, 28]. Many projects in this category concentrate on scalability issues in wide-
area networks and on efficient algorithms and techniques for matching and routing notifications to
reduce network traffic. Most of these approaches use simple boolean expressions as subscription
patterns since more powerful expressions cannot be treated.

The fourth option, Concept-based addressing model appeared because of the need to under-
stand events beyond the closed confines of a single component, application or network. Traditional
pub/sub mechanisms only expose the data structure of events (data to be exchanged) to the par-
ticipants. Event consumers must base on this scarce information to express their interest without
having a concrete definition of meaning nor explicit assumptions made by event/data producers.
Without this kind of information event producers and consumers are expected to fully comply with
implicit assumptions made by participating software components or applications. Even in the cases
of a very small set of applications within an enterprise this approach is questionable.

In order to provide a higher level of abstraction to describe the interests of event producers and
consumers, this model supports from the ground up ontologies which provide the base for correct
data and event interpretation[11, 8]. Rather than requiring every producer or consumer to use the
same homogeneous namespace (as is common in other pub/sub systems), it provides metadata and
conversion functions to map from one context to another. This last feature allows event consumers
to simply specify the context to which events need to be converted before they are delivered for
client processing.

In all the options listed above, producers do not have any knowledge of who or what applica-
tions are subscribing. Additionally, the physical location of message consumers becomes entirely
transparent without requiring a naming service (a.k.a. location transparency).

2.4.3 Publish/Subscribe Systems with Advertisements

Many implementations of publish/subscribe systems have the notion of advertisements which are
issued by producers to indicate their intention to publish certain kinds of notifications. Today,
advertisements are used for two main reasons: First, as we will see in section 2.5.2, they are ap-
plied to optimize implementations of publish/subscribe systems. Second, consumers may want to
inspect the advertisements currently available, for example, in order to issue, change, or cancel sub-
scriptions. Besides this, advertisements should also be used to control the notifications a producer
publishes. For example, if a notification is published by a client that does not match any of its
active advertisements, it should be discarded and not delivered to any client.

2.5 The Rebeca Notification Service

The ideas presented in this work were applied to an existing notification service, Rebeca. There-
fore, from now on we proceed by exploring more specifically its architecture and modular separation
of the previously mentioned responsibilities.



2.5. THE REBECA NOTIFICATION SERVICE 13

2.5.1 Overview

Rebeca1 [28] stands for Rebeca Event Based Electronic Commerce Architecture. Briefly, it’s an
object-oriented notification service framework implemented with Java. It was first designed as a
prototype with the purpose of analyzing different routing strategies for Content-based pub/sub,
along with the usage of advertisements. Then, it was used by several researchers to test different
ideas, hence, it is composed of several class packages responsible of different concerns. In [1] an
approach is explored in order to extend Rebeca to support Concept-based addressing.

Figure 2.7: Rebeca architecture details

Nevertheless, the components we’re interested in are those involved in the client-broker inter-
action. Thus they must be further explored in order to gain insights of it. In Figure 2.72, several
details arise:

• The client’s application layer is composed of several cooperating objects (the arrangement of
these objects is not of our concern, though).

• The client’s home stub layer is mainly composed of an EventBroker. An EventBroker
serves as the client’s basic interface to interact with the notification service. Subclasses of it
implement this interface in different ways. Particularly, a TCPEventBroker implements this
interface through the usage of Sockets and ServerSockets in order to connect to a remote
EventRouter. An EventBroker handles the routing of events by delegating this task to a
RoutingEngine instance (actually, a subclass of it, like Flooding).

• A RoutingEngine keeps track of subscriptions and advertisements together with their origin
and destinations using a RoutingTable to store this information. Events are added through
a queue and delivered to each client’s destination.

• The network’s brokers are instances of the EventRouter class. An EventRouter is a per host
manager of the event system infrastructure. It starts a ServerSocket to listen and accept

1See www.gkec.informatik.tu-darmstadt.de/rebeca
2In Rebeca, the notify(Event) method’s name turns to be process(Event)

http://www.gkec.informatik.tu-darmstadt.de/rebeca�


14 CHAPTER 2. BACKGROUND

new connections from EventBrokers and other EventRouters. Furthermore, currently only
TCP/IP connections are established. An EventRouter also handles the routing of events
delegating this task to a RoutingEngine instance.

• The connectors between EventBrokers and EventRouters, as well as between the EventRouters
themselves, represent a socket communication.

To specify the behavior as a set of action sequences and represent the functional requirements
of Rebeca, a conventional UML Use Case diagram is provided (Figure 2.8). The actors involved
are the possible system users: Producer and Consumer. There are six use cases presented; their
basic flow is as follows:

1. A Producer AdvertisesInformation. This use case starts when the actor contacts the notifi-
cation service to make public (advertise) in advance the characteristics (or pattern) of events
he will publish. He creates an Advertisement based on a particular Filter that represents
the kind of information to publish, and tells its EventBroker’s to advertise it.

2. A Producer UnadvertisesInformation. This use case starts when the actor decides he no
longer wants to produce events that previously did. He creates an UnAdvertisement based
on the previously advertised Filter and tells its EventBroker to unadvertise it.

3. A Producer PublishesNotifications. This use case starts when the actor has produced new
information and wants to publish it. He creates a new Event and tells its EventBroker to
publish it. There’s a note with a precondition stating that the published notification must
match with a previous Advertisement submitted by the producer.

4. A Consumer GetsNotified. This use case starts when a producer publishes a notification that
this consumer is interested in. The notification service forwards to the client’s EventBroker
the new Event. The EventBroker in turn notifies the Consumer. This use case is included3

by the use case PublishesNotifications, and shown using a stereotype. There’s a note with a
precondition stating that the received notification must match at least one of the consumer’s
active subscriptions.

5. A Consumer SubscribesToInterest. The use case starts when the actor decides he wants to
receive new kinds of events. He creates a Subscription based on a particular Filter, which
represents the kind of information to get notified on, and tells its EventBroker to subscribe
it. There’s a note which reminds that given that most event-based applications have an initial
bootstrap phase, the system should deliver certain number of notifications in a short time
allowing the application to quickly start working properly.

6. A Consumer UnsubscribesFromInterest. The use case starts when the actor decides he no
longer wants to receive some types of events. Based on a previously issued Subscription, he
tells its EventBroker to unsubscribe it.

The fifth use case’s note vaguely describes a quality of the system: is a desire of the applications
to minimize the time taken to quickly start working properly. The notification service doesn’t
know how to minimize this time. But, if the client specified what does he needs to correctly start
interpreting the current flow of notifications properly (to bootstrap), it could do something. We
will get back to this point in section 3.2, where the proposed approach (previously indicated in
section 1.3) is analyzed in more detail.

3An include relationship between use cases means that the use case explicitly incorporates the behavior of another
use case at a location specified in the base. The included use case never stands alone



2.5. THE REBECA NOTIFICATION SERVICE 15

Figure 2.8: UML use case diagram

2.5.2 Routing Algorithms

As it was shown in Section 2.4.1, the functionality of the notification service was distributed in
order to provide a more scalable and fault-tolerant system. This system is thus composed of a
set of brokers who manage a subset of the clients, and propagates notifications from producers
to consumers along a path of interconnected brokers. To achieve this, each broker forwards a
notification it processes to a subset of the brokers it is connected to, i.e., its neighbors. This is
done in a way that guarantees that a notification is delivered to all interested consumers. Rebeca
is restricted to acyclic topologies.

The Rebeca notification service has a routing algorithm framework which allowed the following
routing algorithms to be implemented. The simplest way to implement a distributed pub/sub
system is by flooding notifications. This implies that any published notification is processed by
every broker. Although it is well suited to systems in which subscriptions are changing at a very
high rate, a lot of notifications may be forwarded unnecessarily because each notification is sent to
every broker (regardless of whether or not it has a local client with a matching subscription).

This drawback led to the idea of filter-based routing. Here, each broker has a routing table that
is used to route notifications based on their content towards interested consumers. Compared with
flooding, filter-based routing reduces the quantity of notifications that are forwarded, but compli-
cates notification forwarding and introduces the necessity to update routing tables if subscriptions
change or if new subscriptions are issued.

With Simple Routing, new and cancelled subscriptions are simply flooded into the broker net-
work such that they reach every broker. Hence, each broker knows when to forward a newly received
notification, as well as where to do so in such case. This strategy is simple but it implies that every
broker has global knowledge about all active subscriptions (every routing table contains a routing



16 CHAPTER 2. BACKGROUND

entry for every active subscription).
By taking into account similarities among the subscriptions, global knowledge of active sub-

scriptions is avoided. In this way, the notification service performance and scalability is enhanced
(for concrete results the reader is referred to [29]). The following strategies do so but differ in the
resulting routing table size.

When using Identity Routing, a subscription is not forwarded to a neighbor if an identical
subscription (that has not been cancelled) was forwarded to that neighbor. Two filters are said to
be identical if they match exactly the same set of notifications.

Another strategy is Covering Routing. A filter covers another filter if the former matches at
least all notifications the latter matches. A subscription is not forwarded to a neighbor if another
subscription (that has not been cancelled) that covers the former was forwarded to that neighbor.

A different approach is Merging Routing. A broker can merge the filters of existing routing
entries and forward this merger to a subset of its neighbors. The generated mergers are forwarded
in a way such that only interesting notifications are delivered to a broker.

Routing with Advertisements implies that advertisements are issued by producers to indicate
their intention to publish certain kinds of notifications. Similar to subscriptions, each client can
have multiple advertisements which are cancelled separately. Advertisements can be used as an
additional mechanism to further optimize content-based notification routing. For this purpose a
second routing table is managed by every broker. This advertisement routing table is maintained
by the same algorithms as the subscription routing table, i.e., by forwarding new and cancelled
advertisements through the broker network. While the subscription routing tables are used to
route notifications from producers to consumers, the advertisement routing tables are used to route
subscriptions from consumers to producers: a subscription is only forwarded to a neighbor if it
overlaps with an active advertisement that has been received from this neighbor before. Most
filtering-based routing algorithms can be combined with advertisements.

2.6 Summary

This chapter presented the essential blocks used to build up the present work. In Section 2.1
we saw the composition of a distributed system. Distributed systems techniques have attracted
much interest in recent years due to the proliferation of the Web and other Internet-based systems
and services. Moreover, people have an increasing desire for ubiquitous access to information
anywhere, anyplace and anytime. Hence they need not only mobile and portable devices but
adequate communication systems and infrastructures that differ with the conventional (i.e., fixed)
systems. The distinction between the two was made clear in Section 2.2.

Application developers will benefit designing information-driven applications (Section 2.3) with
the publish/subscribe paradigm because of their characteristics (enumerated in Section 2.4.1). Fi-
nally, in Section 2.5, the shape of a large-scale, content-based, publish/subscribe system called
Rebeca was described. With this description the reader is aided in the understanding of the guts
of the system over which the enhancements were developed.



Chapter 3

Proposed Approach

In this chapter we explore the scenarios presented previously in Section 2.3. The scenarios will help
the reader to locate in the context of the possible applications this middleware is intended for. Then,
we capture the intended behavior of the enhancement and how to support interchangeable caching
strategies. We abstract the caching strategies’ generic behavior, which serves as an introduction
for the next chapter.

3.1 Scenario Classification

The pub/sub middleware can be used to implement information-driven applications like the exam-
ples listed in Section 2.3. Here, these traditional messaging scenarios will be further explored in
order to have a brief description of the range of environments where some strategies behave better
than others.

Not all of these scenarios can be realized with the current implementation of Rebeca. In order
to check how Rebeca adapts to the requirements of the previously enumerated scenarios, the list
was extended and classified. These scenarios were classified according to the consumer or producer
of information’s mobility. This classification will allow us to see which of them can already be
implemented (Figure 3.1). The scenarios’ mobility was splitted into four classes (and mapped to
the four respective columns):

1. These scenarios are not location-dependent at all, in the sense that the subscriptions and
events are not related to a location.

2. These scenarios somehow include the notion of locations, but a specific, concrete one. Here
it doesn’t care where the information is to be consumed or where was it generated, it only
cares what the information says that it is about.

3. These scenarios consider information from fixed locations, but the consumer’s location is
important to see if notifications match a filter or not.

4. These scenarios consider information from moving targets and the consumer’s location, to see
if notifications match a filter or not.

We can state that while the scenarios in the first column can be realized with the current imple-
mentation, the others don’t. The third and fourth columns depend both on client and information
(possibly varying) location, hence an extra mechanism is needed in order to provide the information
of context changes. This could be handled with the Wireless Sensor Networks approach, which is
a technology envisioned to fulfill complex monitoring tasks in the near future, though this is not
an addressed issue in this thesis.

However, scenarios in the second column can be implemented using Rebeca with the Concept-
based addressing model. This model could be extended with representations for the space or

17



18 CHAPTER 3. PROPOSED APPROACH

locations, and provide a minimal set of operations, particularly with a semantic metadata model
like MIX which allows information exchange in loosely coupled environments like pub/sub systems.

Scenario Details

Dependence on Location

Not at all
A specified

position
Consumer

position

Consumer
& Producer

position

Personal Info

Driver support

Infotainment support

- Addresses *
- Calendar
- Curriculum Vitae Info

- Auctions: Average closing price of PDA bids *

- Auctions: Average closing price of PDA bids *

- Malfunctions of my car *
- Traffic jams on my way *
- Nearby Gas Stations *
- Distance to nearest Gas Stations (on this road) *
- Parking spaces *

- Next TV Shows *

- TV Shows

- Weekend activities

- offers

} Not suitable for pub/sub

}

}

Not suitable for pub/sub

Not suitable for pub/sub

*
*

*

*

*

iPAQ 3850 with 256 CF card

iPAQ 3850 with 256 CF card

Related to Snakes, Crocodiles, etc.

Related to Egypt

In my city/region

From my location, to the Fiji Islands

in Germany

Last Minute

Enterprise Apps

News Delivery

Travel/Tourist support

- Stock Quote Monitoring *
- Real-Estate Agents *

- Results of NBA -> LA Lakers playoffs *
- Terrorism and suicide attacks (worldwide) *
- News about LoveParade *

- My city news *

- Local news *

- Advertisement on Oktoberfest's *

- My city weather info *
- Nearest Tourist Info Center *
- Nearby Hotels *

- Nearby Restaurants *

- Nearby Attraction points *

- Actual local weather conditions *

(Though I could need "Holland LoveParade"-specific news)

About acquiring new jobs

About crime, politics, informatics...

3* Hotels w/free vacancies

Chinese food, Asian food

Electronic Music, Museum discounts, Historical buildings, ...

Info about this city, this state/province/region

Figure 3.1: Scenario classification

3.2 Proposed Approach Analysis

As we stated previously, the proposed approach is based on the storage of notifications in cache
queues distributed in the network’s brokers. Thus, two issues must be dealt with in order to
introduce the proposed changes:

• We must think of some means for the client application to specify how many (or how old)
notifications does it need to bootstrap (i.e., the external changes).



3.2. PROPOSED APPROACH ANALYSIS 19

• We must think of how would the notification service use this information, in order to try to
do an effort to provide the required notifications (i.e., the internal changes).

As explained before in section 1.3, this strategy is based on the assumption that applications can
be bootstrapped with recently published notifications, which means that client applications make
no distinction between new or “recently” published notifications. We’ve nicknamed this process as
subscribing into the past. Though normally events have an associated time to live attribute, we’re
dealing with applications willing to pay the cost of not considering it against the gains in response
time.

To attend the first issue, we need to clearly specify what does the client application need
to bootstrap. Basically, an application could specify its needs considering at least the following
options:

• how many notifications does it need to bootstrap (i.e., an integer amount),

• how old notifications from the past does it need to bootstrap (i.e., related notifications pub-
lished a specific number of minutes ago), or

• a mixture of the previous two (i.e., an integer amount of notifications published within a
number of minutes ago).

This “specification of the application needs” is called bound and serves as a parameter for the
strategies to determine which matching notifications to fetch from the past (if any available).

EventBroker

interface

...

+ void advertise(Advertisement a, EventProcessor proc)
+ void unadvertise(Advertisement a)
+ void subscribe(Subscription s, EventProcessor proc)
+ void subscribe(Subscription s, PastBound past, EventProcessor proc)
+ void unsubscribe(Subscription s)
+ void publish(Event e)

new!

Figure 3.2: Extending the pub/sub interface

Then, we need to provide a means to specify this bound to the notification service. For this pur-
pose, the pub/sub subscription interface needs to be extended. When the client application makes
a new subscription, it specifies its interests with a Subscription (constructed with a Filter), as
well as its needs (encapsulated in a PastBound object) to the subscribe() method (Figure 3.2). In
this way the notification service can check to see if it’s able to fulfil the user requirement. Also, by
adding a new subscribe() method (instead of changing the old one), we avoid forcing old clients
to be changed in order to conform to the modified method’s signature.

To attend the second issue, we propose an extended system behavior which is common to every
caching strategy. The general idea is to incorporate a component that intervenes in the client
subscription process by adding the caching functionality. The system’s new generic behavior is
illustrated as a specialized UML sequence diagram in Figure 3.31. Given that the UML specification
makes no provisions for introducing elements that connect directly to methods, the specialized
diagram contains a new element. It is drawn as a circle with a cross inside, which represents the
method that must be intercepted. This UML diagram specialization was adapted from the proposal
in [5]. There, they don’t state how should the sequence description be ordered. However, an ad-hoc
ordered description follows:

1For simplicity, the diagram shows aConsumer subscribing itself (i.e., this) to be notified and process incoming
events, which could not always be the case



20 CHAPTER 3. PROPOSED APPROACH

Figure 3.3: New subscribtion behavior

1. First, the client application issues a subscription with a Subscription and a PastBound as arguments (previ-
ously explained).

1.1 Depending on the actual broker deployment configuration parameters, different internal duties are
performed.

1.2 The subscription invocation is intercepted by a CachingStrategy, which queries the caches to find
matching notifications (observe the circle with a cross inside).

1.2.1 - 1.2.3 Just as in the normal operation, the enhanced pub/sub system delivers the required
notifications that match the specified filter through the notify() callback method. This makes opaque to the
consumer that those received notifications have already been delivered in the past.

1.3 - 1.4 After sending the solicited notifications stemming from the past, standard delivery of present
and future notifications commence operation.

The notification service will capture this bound and query the broker network to fetch the notifi-
cations. This generic behavior could be specialized in several ways, which we call caching strategies.
There might exist several strategies differing in their simplicity, effectiveness of notification fetch-
ing, memory overhead, network utilization, data access mechanisms and requirements from the
infrastructure. The next chapter gradually explores in detail and provides an adequate analysis of
feasible alternatives.

3.3 Summary

In this chapter we have immersed ourselves in the problem by classifying the scenarios where
minimizing the bootstrap latency clearly enhances the system’s quality of service. Then, we have
focused and planned how to face the problem, beginning by the outer changes and ending by a
generic behavior which considers, since the early stages, that several caching strategies might exist.
As a result, a Caching component was introduced into the infrastructure that is responsible of the
caching concern. In the following chapter we will describe how this component can help to reduce
or eliminate the bootstrapping latency, by carrying out an analysis of the mentioned concern.



Chapter 4

Caching Strategies: Analysis

This chapter provides an analysis of the caching strategies. First, requirements on caching strategies
are dictated. Next, a comparative analysis between traditional caching systems and caching in
event-based systems is given. Then, caching issues are developed in two sections: data storage and
data querying. Since several strategies are developed, we summarize the chapter by providing some
guidelines on choosing the appropriate strategy.

4.1 Caching Strategies Requirements

Although there are several caching strategies to implement, we can enumerate a number of overall
requirements that they all must fulfil. These requirements are listed as follows:

• Response Time. As stated by Stankovic and cited in [4], “the objective of fast computing is to
minimize the average response time for some group of services”. This quality attribute is the
central issue driving the strategies development. This also suggests that metrics must be used
in order to establish a comparative working framework of the times required by applications
to bootstrap.

• Time overhead, related to the worst-case overhead (e.g., not enough notifications were pub-
lished to minimize the bootstrapping sequence). Though the idea here is best effort (we can
not guarantee nothing), compared to the traditional case where no strategies are applied at
all, the strategy should ensure that the bootstrapping latency is not increased.

• Space usage, related to a controlled, judicious and customizable caching. The strategies
should not deliberately store everything in order to enhance the QoS (this would convert
the system into a complete event history repository, eliminating the transient nature of the
notifications). However, it is mandatory to have some means to specify or otherwise limit the
broker resources available for a strategy to execute. This could be measured in terms of the
per-host cached entries amount.

• Integrability, in several forms:

– Correctness. The functional requirements or behavior of the pub/sub system must hold
while the strategy is performing. Basically it must preserve the per-producer FIFO order
of event delivery at each broker.

– Transparency, by delivering the notifications from the past as with the normal behavior
(i.e. using the notify() interface). Nevertheless the consumer should not assume (or be
aware that) these notifications occurred in the past, since that depends on the internal
policies of the caching strategy being in use.

21



22 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

– Dynamism, by structuring the solution to provide a flexible way of selecting the caching
strategy that best fits, allowing a plug and play feature of this functionality at broker
startup-time.

• Separation of Concerns, as a means to cleanly separate the essential quality attribute of
performance with the rest of qualities of the system (as transactions, security, persistence,
etc).

• Specification of the requirements that each strategy has from the infrastructure. Requirements
as global ids, synchronized clocks, etc., might not be provided by every notification service.
Hence, specifying this kind of requirements allow the strategy to be reused on any notification
service that accomplish them.

These requirements might be accomplished directly or not. For instance, the judicious space
usage can be managed by arranging a customizable data structure (which is not that complex),
whereas designing a flexible mechanism to select the caching strategy is not straightforward.

4.2 Caching in Event-Based Systems

In event-based systems, caching is applied in a different fashion than in traditional systems (e.g.,
Database Management Systems or Operating Systems). Hence it is important to recall these usages
and stand out its differences.

Traditionally, caching’s concept is the following: information is kept in some storage system
(e.g., disk). When this information is needed, it is copied into a faster storage system (i.e., main
memory), in a temporary basis. Later, when a piece of information is needed, the cache is first
checked. If the piece is found, it is used directly. Otherwise, information is used from the main
storage system and a copy is made into the cache under the assumption that this piece of information
will later be used. With this in mind, several issues can be stated:

1. Cache Coherency and Consistency: In standard systems, caching structures represent inter-
mediate layers which hold (perhaps modified) copies of underlying data. Hence in these envi-
ronments, updating strategies must be clearly defined (e.g., implicit or explicit). Nevertheless,
in event-based systems, these structures hold copies of read-only data. These notifications are
never sent back to the creator or publisher (unless itself subscribes to its own information).
Though there might exist several copies of the same notifications spread over the notification
service, all of them have exactly the same values hence no consistency problems can arise.

2. Cache Sizes: Given that cache sizes is limited, cache management is very important. This is
true in both kind of systems.

3. Information lifetime: In event-based systems, information is often said to be short-lived.
Though, the period of validity of the information managed by standard systems’ caches vary
from very short (like cached disk sectors) to very long (like cached WWW images).

4. Buffering: caching and buffering are two distinct mechanisms. Their main difference is that
in a buffered system each buffer could hold the unique existing copy of a piece of information
in order to cope mainly with device speeds mismatches, whereas in a cached system, by defi-
nition, each cache just holds a copy on a faster storage of an item that resides elsewhere which
allows these copies to be progressively updated and modified in order to improve the overall
data access efficiency. These functions can be applied together in certain cases, though (e.g.,
operating systems disk I/O drivers [32]). In our case, we use caches as notifications buffers
(recall that cached events occured in the past) with the goal of performance improvement,
hence taking the best from each mechanism.



4.3. NOTIFICATIONS STORAGE 23

Having defined these similarities and disparities, we proceed deepening the subject by developing
two issues which are closely related though different: Notifications Storage and Cache Querying.
The rest of this chapter contains an in-depth analysis of both subjects.

4.3 Notifications Storage

In order to decide when and how to cache notifications received and (perhaps) forwarded by the
brokers, policies must be defined.

Regarding the “when” to cache notifications we recall the locality principle. This concept,
sometimes also called locality of reference, is a concept which deals with the process of accessing
a single resource multiple times. Particularly, temporal locality establishes that a resource that is
referenced at one point in time will be referenced again sometime in the near future. Traditional
cached systems design exploit temporal locality in order to decide when to cache data and how
long to maintain this data in cache (which is called replacement policies). Nevertheless, in event-
based systems, this decision must be made by the brokers based on the information they handle.
Basically, this information consists of:

• Subscriptions and Unsubscriptions

• Advertisements and Unadvertisements

• Notifications

It is important to note that caching decisions heavily depend on the broker network deployment
configuration. This configuration parameters affect the information observed by the network’s
brokers, thus making some brokers receive different information than others. Basically this is
because of the usage (or not) of advertisements, as well as the routing algorithm being in use.
For instance, if advertisements are not being required, then fewer cache management decisions
can be made because a broker doesn’t know where to get notifications from (i.e., from which
neighbor brokers), thus having to resort to an exhaustive approach. Likewise, as we will see in the
next section, the fact of a notification being received and/or forwarded by a broker executing the
Flooding routing algorithm, is not a reason to assume that this notification is really interesting
for any consumer (which fully contrasts with the locality principle).

Because of the previously exposed, we argue that caching strategies depend on the broker de-
ployment configuration. This is the underlying reason why an analysis of the relationship between
possible deployment configurations and the caching strategies is needed.

On the other hand, regarding the “how” to cache notifications, we proceed by analyzing the per
broker buffer data structure next. These structures will retain a set of notifications for subsequent
queries, which must return them in the same order they’ve been queued (i.e., the arrival order). We
could think of these notification storages as simple bounded length buffers. Since these structures
must behave as FIFO queues, they could be implemented as circular ring buffers, hence providing
an implicit FIFO ordering to the element position (see Figure 4.1.a).

The main problem with this approach is that storing every notification in a single circular
buffer causes high-frequency notification types to overwhelm low-frequency ones. In other words,
the buffer has no control over distinct notification types quantities but an overall control.

A possible solution to this problem is to provide parallel circular ring buffers. These buffers can
be indexed by subscription’s filters (Figure 4.1.b), which allows a more precise administration of the
overall buffer size. With this arrangement we can specify the maximum length of both the filters
index and the filter’s buffers. The required behavior can be described in terms of the following
events:



24 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

F
1

F
2

F
5

F
4

F
3

a) b)

Figure 4.1: Buffering structures

• When a subscription is received, it is assigned an empty index entry and a circular ring buffer
is allocated. Since the structure might already contain notifications (stored in other filter’s
buffers) which match the new filter, the pre-existent filter’s buffers are linearly scanned in
order to fill the new one.

• When a notification is received, it is matched against every filter. For each matched filter, it
is accordingly enqueued.

• Finally, when an unsubscription is received, the respective buffer is disposed.

Although correct for a generic subject- or topic-based addressing notification service, this solu-
tion doesn’t take advantage of the benefits of a content-based notification service. A more striking
idea is to make use of the existent filter relationships such as identity, covering and merging. These
relationships can be exploited as described next:

• Filter identity: two filters F1 and F2 are identical (denoted F1 ≡ F2) iff they match the
same set of notifications. Alternatively, we can define filter identity with the function N(F ),
defined as the set of all the notifications that match the filter F . Thus, two filters F1 and F2

are identical iff N(F1) = N(F2). With this function it is possible to prevent buffer duplicates
(in contrast with the previous approach where this was not considered). We add a reference
counter to each subscription filter. Then when a new subscription is received, pre-existent
buffers are checked for identity. If none identical filter is found, a new buffer is created with
its counter initialized to one. If an identical filter is found, its counter is incremented. When
an unsubscription is received, its counter is decremented. Finally, when a counter reaches to
cero, it is disposed.

• Filter covering: a filter F1 covers another filter F2 (denoted F1 w F2) iff N(F1) ⊇ N(F2).
This function defines a reflexive partial order over the set of all possible existing filters. If
F1 w F2, then the fact of a notification n ∈ N(F2) implies that n ∈ N(F1). Moreover, F1

is a real cover of F2, denoted by F1 A F2, iff N(F1) ⊃ N(F2). Checking if a filter covers
another allows us to benefit from the already stored notifications, while avoids looking into
every pre-existent buffer. When a subscription is received and a new buffer entry must be
created, its filter is first checked to see if it is covered by other indexed filters. For those who
does, their contained notifications are copied into the newly allocated filter buffer.

• Filter merging: a filter F is a merger of (or covers) a set of filters {F1, ..., Fn}, denoted
F w {F1, ..., Fn}, iff N(F ) ⊇ {⋃i N(Fi)}. F is said to be a perfect merger if the equality
holds, and an imperfect merger otherwise. With this powerful function, it is possible to add
new layers of filters as the caching structures grow, which allow a quick detection of pre-
existent matching filters. The filters of these new layers might be created as mergers of the
subordinate filters, behaving somehow like skip-lists.



4.3. NOTIFICATIONS STORAGE 25

The approach presented above must still address two issues which weren’t yet described in
detail:

• Notification replication: When new notifications arrive, they are checked to see in which
buffers should be enqueued (i.e., copied). This might produce several replicas of the received
notifications, wasting valuable caching storage space.

• Notification ordering: A problem with the proposed structure is how to order different buffers’
matching notifications when a new buffer is allocated. This is because there is no relative
order between notifications from different buffers.

A solution to both problems results by working out the combination of the previously described
ideas. We develop the structure behavior which takes advantage of the content-based filter re-
lationships previously enumerated and addresses the notification replication and ordering issues.
The proposed structure is illustrated in Figure 4.2 and its definition is depicted in Pseudocode 4.1,
where the following modifications were considered:

1. We define a record, CountedMessage (line 1), consisting of <notification, reference counter>
pairs. This record shapes the data type for the entries of the main buffer (line 6), which is a
circular array with a bounded length defined (statically or dinamically) by MaxGlobalBuffers.

2. We define another record, CountedFilter (line 7), consisting of the triple <filter, reference
counter, references buffer>. This record shapes the data type for the entries of the index
(line 13), which is an array with a bounded length defined by MaxIndexedFilters.

3. CountedFilter ’s reference counter field counts subscriptions received with a given filter. This
avoids duplicate buffers for identical filters. When it reaches to zero, the index entry must be
deleted.

4. In order to store each notification only once, we add an additional indirection level (Count-
edFilter ’s third field at line 11). Hence, filters buffer’s entries reference notifications stored
in the main buffer instead of storing the notifications themselves. These queues may grow up
to a maximum length defined by MaxFilterBuffers. Note that it is reasonable to state that
MaxGlobalBuffers > MaxIndexedFilters ∗ MaxFilterBuffers.

Pseudocode 4.1 Buffering Structure Data Definition
1: type CountedMessage = record
2: begin
3: Message msg,
4: int referenceCounter
5: end
6: CountedMessage buffer[MaxGlobalBuffers];
7: type CountedFilter = record
8: begin
9: Filter f,

10: int referenceCounter,
11: ( ref CountedMessage) messages[MaxFilterBuffers]
12: end
13: CountedFilter index[MaxIndexedFilters];

The processing of new messages is described in Pseudocode 4.2. The operation enqueueNotifi-
cation simply stores the notification in the first free entry of the buffer1, and its reference counter
is initialized to 0. For each matching filter F, the operation enqueueReference inserts into F ’s

1Provided that by definition MaxGlobalBuffers is always greater than MaxIndexedFilters ∗ MaxFilterBuffers, we
can ensure that there is always at least one free cell.



26 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

F
1

F
2

- -

F
3

01

00

01

02

00

01 000000000000000101020101020101010101

MaxGlobalBuffers

MaxFilterBuffers

M
a

x
In

d
e

x
e

d
F

il
te

rs

Figure 4.2: Buffering structure

associated buffer a reference to the notification m, incrementing buffer[m]’s reference counter. If
the filter’s buffer contains free space (constrained by MaxFilterBuffers), this reference cell is simply
enqueued. However, if the filter’s buffer is full, the first notification reference (i.e., the oldest)
must be removed in order to make space for the new one. Note that reference removal includes
decrementing the reference counter of the associated notification. Moreover, when the reference
counter reaches to zero, the notification is removed from the main buffer. Finally, the operation
incrementReferenceCounter is quite straightforward: it simply increments the specified reference
counter value.

Pseudocode 4.2 Processing of a message m
1: enqueueNotification(buffer,m)
2: for all F ∈ index · m matches F do
3: enqueueReference(index[F].messages, m)
4: incrementReferenceCounter(buffer[m])
5: end for

The processing of a subscription’s filter F is depicted in Pseudocode 4.3. Basically there are two
options: the structure might already contain an identical filter (from another, previous subscription)
or not. If this is the case, its reference counter is incremented (line 2). Otherwise, the following
process is executed: First, space for a new buffer is allocated in the index (line 4), constrained
by the limit MaxIndexedFilters. If the structure has no space for further indices, the subscription
can not be cached and a warning message is logged. Second, pre-existent filters which cover F are
searched for. For each of their associated buffers’ notifications, operations orderedEnqueueReference
and incrementReferenceCounter are executed. The former operation implements ordered insertions
on filter’s buffers according to the position in the main buffer; the latter was described previously.

The processing of an unsubscription’s filter F is depicted in Pseudocode 4.4. Initially, the
reference counter at index[F] is decremented. When it reaches to zero, the entry (and its associated
message references buffer) must be disposed. This comprises the following tasks: for each referenced
notification, its reference counter is decremented (line 4); if this reference counter reaches to zero,
the operation removeNotification is executed, which erases the notification from the structure (line
6); and finally, index entry can be deleted (line 9).



4.4. CACHE QUERYING 27

Pseudocode 4.3 Processing of a subscription’s filter F
1: if ∃ G ∈ index · G is identical to F then
2: incrementReferenceCounter(index[G])
3: else
4: allocate space for new buffer at index[F]
5: for all G ∈ index · G covers F do
6: for all m ∈ index[G].messages · m 6∈ index[F].messages do
7: orderedEnqueueReference(index[F].messages, m)
8: incrementReferenceCounter(buffer[m])
9: end for

10: end for
11: end if

Pseudocode 4.4 Processing of an unsubscription’s filter F
1: decrementReferenceCounter(index[F])
2: if index[F].referenceCounter = 0 then
3: for all m ∈ index[F].messages do
4: decrementReferenceCounter(buffer[m])
5: if buffer[m].referenceCounter = 0 then
6: removeNotification(buffer,m)
7: end if
8: end for
9: dispose entry space at index[F]

10: end if

As we stated previously, notification storage and cache querying are not independent of each
other. As we will see next, and in spite of having a precise definition of a buffering data structure
behavior, some of the described procedures might slightly change according to different caching
strategies and deployment configuration (e.g., routing algorithms). We proceed by introducing these
strategies and analyzing different possibilities for implementing them over different deployment
configurations.

4.4 Cache Querying

Before reasoning on event-based systems cache querying, some preliminary issues must be clarified.
In principle, we must note that the broker’s network conform an undirected acyclic graph (UAG).
This UAG is depicted in Figure 4.3. Note that in the illustration, components belonging to the
notification service have gray backgrounds, while clients (Xi) always have a white background.
Each client Xi can maintain more than one active subscription at a time. Additional terminology
will help us to provide a more precise explanation. We use Local Event Broker (LBi) to refer to
the client’s access broker (a pub/sub library), which provides the pub/sub interface used by clients
to produce or consume information. Complementary to this, other brokers exist which act as event
routers (ERi). They can be further classified as Border or Inner Brokers, though in practice they
are the same kind of components. Finally, empty routing tables (previously defined in section 2.5.1)
are also shown.

With this graph in mind, a first issue arises: given that the notification service is an UAG,
a key aspect is how deep should the cache query search for notifications, or, more formally, how
many levels (lets say, k) should be traversed in the search for notifications stored at other broker’s
buffers. We argue that the amount of traversed nodes is a crucial aspect of the strategies, since
each link traversal must be viewed essentially as a Remote Procedure Call (RPC), which results in
the following costs:

• serialization/deserialization of the notification or reply

• marshalling/unmarshalling of parameters



28 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

Figure 4.3: UAG components

• RPC runtime and communication software

• physical network transfer

These costs point out that a single RPC (or traversal) requires approximately between 10.000
and 15.000 machine instructions, thus having local procedure calls about 100 times faster.

In spite of the previously mentioned, it might be the case that a notification request (from
a client subscription) can be satisfied by fetching notifications cached in several broker’s buffers.
Hence, considering that these requests always originate at the borders of the graph, we can classify
the approaches according to the number of traversed levels k :

• With k = 1, the strategy only searches the caches at Local Event Brokers.

• With 1 < k <= M, the strategy can further ask neighbor brokers for cached notifications, but
its actions are restricted to a maximum depth M.

• With k = ∞, the strategy is allowed to perform as an exhaustive search.

Next, we name these strategies, pose their difficulties and develop solutions to overcome them
as well.

4.4.1 Local Broker Caching

The first approach to caching in event-based systems is to deploy the described data structure at
the Local Event Brokers. We can attach the caching strategy to the RoutingEngine in the home
stub layer (described in Section 2.5.1) as illustrated in Figure 2.7. Just as with the rest of the
strategies, the “glue code” that binds the broker behavior with the caching strategy is provided by
an abstract component that incorporates the required functionality (e.g., intercepts the appropriate
calls).

We elaborate this approach in conjunction with a deployment of the Flooding routing algorithm.
Hence we will first illustrate the behavior of the former alone. In Figure 4.4 the initial state of the
routing tables is shown. As it can be seen, each routing entry contains a filter FT , which matches any
notification, together with their couples which point to every neighbor broker. These entries allow
the Rebeca routing framework to flood published notifications. Then, the subscription process is
depicted. In Figure 4.5.a, X1 subscribes to F, while in 4.5.b, X4 subscribes to G (lets assume that
F and G are disjoint, or more precisely, N(F) ∩ N(G) = ∅). As it can be seen, the filters are simply



4.4. CACHE QUERYING 29

added to the respective Local Event Brokers’ routing tables2. Finally, the notification forwarding
process is depicted. In Figure 4.6.c, X5 publishes n1, which only matches F. As it can be seen,
only client X1 receives the notify() message even though the notification n1 floods the whole broker
network.

Figure 4.4: Flooding behavior: initial deployment

Figure 4.5: Flooding behavior: subscription update

In such an environment, the addition of the caching feature at the Local Event Brokers is
illustrated in Figure 4.7. Attached to the Local Event Broker’s routing engines can be seen the
representations of the caching data structure instances. Note that in order to react and perform,
the strategy doesn’t require to cross the notification service boundary, hence entirely running on
the clients’ machines. This very naive approach presents a series of advantages and disadvantages,
which we enumerate next3:

4 Particularly in mobile environments, and because of the exposed in Section 2.2, the traversal of
the link from the access broker to the Border Broker might be very expensive. Hence in those
deployments where Local Event Brokers act as hubs for several (mobile) client applications,
this approach could perform well.

4 The notification storage behavior previously described remains unchanged (i.e., no further
modifications need to be developed).

2In these schemes the symbols ⊕ and ⊗ represent routing entries additions and removals, respectively.
3In these analysis the symbols 4, 5 and ≡ represent advantages, drawbacks and relative, respectively.



30 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

Figure 4.6: Flooding behavior: notification forwarding

Figure 4.7: Flooding behavior with Local Broker Caching

4 No extra requirements from the infrastructure.

5 Given that notification fetching is restricted to Local Event Broker’s buffers, the effectiveness
of this strategy heavily depends on the similarity of the interests of the clients too (more
precisely, the similarity of the issued subscriptions). This is the foundation of an analysis
which evaluates caching efficacy according to variation on similarity of nearby clients interests.

≡ If the routing algorithm being in use is Flooding, no other better alternative can be chosen.

The latter point requires further explanation. Remember from Section 2.5.2 that the remain-
ing routing algorithms rely on filter forwarding to update the routing configuration in reaction
to subscribing and unsubscribing clients. This allows the brokers to update their routing tables
accordingly. The whole goal is to prevent unnecessary notification forwarding. However, and as
it was shown in Figure 4.5, filters are not forwarded when Flooding is used. Hence, a caching
structure deployed at inner or (even) Border Brokers wouldn’t be able to base its decisions on
observed filters (since they don’t see filters at all). Furthermore, the fact of a notification being
forwarded is not enough to assume that the notification itself is of interest for at least one client
(it could be finally discarded by every Local Event Broker in the notification forwarding process).
Thus, we conclude that implementing a strategy other than Local Event Broker Caching on top of
a Flooding deployment is not reasonable because: a) every notification should be stored without



4.4. CACHE QUERYING 31

knowing if they are useful for anyone, and b) filters should be forwarded into the broker’s network,
completely missing the point of the routing algorithm selection.

This strategy possess a k value of 1. In the forthcoming subsections we present other approaches
which tackle this strategy’s main drawback, which is the dependency on nearby clients similarity
of interests, by augmenting k ’s value.

4.4.2 Border Broker Caching

In order to increase the possibility that new subscriptions find other identical or overlapping ones,
the next step consists of moving the point where notifications are stored inside the broker’s network.

The basic idea is to perform the notifications caching at the Border Brokers and devise an
interaction with the Local Event Brokers to fetch these notifications. We could imagine information
cones where clients embraced by each cone consume similar information, or what is the same, issue
similar subscriptions. The classified scenarios in Section 3.1 further make it reasonable to state that
in mobile environments nearby clients will have similar interests. The hope is that notifications
cached for a client will be needed by other local clients.

By assuming that a traversal of the link between Local Event Brokers and Border Brokers can
be made, the number of cached notifications for distinct subscriptions is clearly maximized. It is
also assumed that Simple Routing, a more complex routing algorithm, is used by the brokers. This
is because in order to appropriately deploy the caching structure at the Border Brokers, they must
always receive the subscriptions, which only occurs with this algorithm.

Figure 4.8: Simple Routing behavior: initial deployment

In the same way we did before, we elaborate this approach in conjunction with a deployment of
the Simple Routing routing algorithm. Hence first we will illustrate the behavior of the former alone.
In Figure 4.8, the initial state of the routing tables is shown. In contrast to that of Figure 4.4, the
routing tables are empty. With Flooding, the routing table’s entries change according to the network
topology (which is rather static). In contrast, the other routing algorithms rely on filter forwarding,
hence the routing tables reflect a global or partial knowledge of active subscriptions (which are
rather dynamic). The subscription process is depicted next. In Figure 4.9.a, X1 subscribes to F.
As it can be seen, the filter is not only added to LB1’s routing table but flooded across the network.
Through appropriate administrative messages, filters are added into every broker’s routing table.
Finally, the notification forwarding process is depicted. In Figure 4.10.b, X5 publishes n1, which
matches F, while in 4.10.c, X6 publishes n2, which doesn’t match F. As it can be seen, client X1

only receives n1. Note also that n2 is not forwarded beyond LB6 and that n1 is only forwarded
across a route towards client X1.

In such an environment, the addition of the caching feature at the Border Brokers is illustrated
in Figure 4.11. Note that although event router ER3 is currently an Inner Broker, nothing prevents



32 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

Figure 4.9: Simple Routing behavior: subscription update

Figure 4.10: Simple Routing behavior: notification forwarding

Figure 4.11: Simple Routing behavior with Border Broker Caching



4.4. CACHE QUERYING 33

it of getting converted into a Border Broker dynamically (e.g., by receiving a connection from new
clients). Hence, it has the caching structure attached too.

The interaction is rather simple: the Local Event Broker asks the Border Broker for notifications
matching a given filter and bound, and the former, in turn, answers with a reply containing the
required notifications, if any. This interaction, though, must hold the requirement that when a
client issues a subscription, the infrastructure must start delivering back notifications (from the
past or not) in the same order that would have done if this client had subscribed earlier. More
precisely, duplicate or missing notifications must be prevented. Thus, a couple of considerations
should be made.

The first consideration is to tie the notification fetching functionality to the subscription for-
warding process in an atomic operation. This allows the routing framework to immediately start
routing notifications to the client after the reply is delivered back. The second consideration is
based in that reply’s notifications and new notifications are concurrent, hence careful attention
must be paid to what to do with these concurrent notifications to deliver them in the correct order.
With this purpose, the Local Event Broker blocks those notifications that should be delivered to
the client which were received in the meantime between the reply is requested and it is effectively
received. Together with each blocked notification, the link from where it came from is registered.
Afterwards, when the reply arrives from link `, the amount of blocked notifications that came from
link ` are compared to the amount of notifications contained in the reply. If the former are more,
the latter are dropped, and viceversa (otherwise duplicates could be delivered). Finally, the chosen
notifications are delivered.

Hence, the subscription process is slightly changed. When a client issues a subscription with a
request for notifications from the past, the strategy adds the bound information to the subscription.
When a Local Event Broker receives a subscription which includes bound information, it inserts
a marked routing entry in the routing table. This marked entry indicates that the entry is set
on hold. Moreover, an initially empty reply is associated to the entry. This reply will block and
retain the delivery of matching notifications (along with the link where they came from) received in
the meantime while the Local Event Broker receives a reply from the Border Broker. Figure 4.12
illustrates the main flow of events in an UML sequence diagram:

Figure 4.12: Border Broker Cache Querying

1. A consumer subscribes itself to a filter and specifies a bound (F and bound, respectively).

2. The original Local Event Broker behavior is preceded by a new action:



34 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

2.1 First, the bound information is attached to the subscription F, which we denote by F’. Hence
this specialized Filter also carries information about the specified bound (e.g., how many notifications
are required).

2.2 The subscription process proceeds as usual, except that now F’ is forwarded (instead of F )
to the Border Broker.

2.3 The usual behavior creates a routing entry with the subscription F’. Since the subscription
carries bound information, the entry is set on hold. Also, a new (empty) reply retains meantime
received events.

2.4 With Simple Routing, every subscription is forwarded through appropriate asynchronous admin
messages (note different arrowheads).

3. The Border Broker at the other side receives the admin message including a bounded filter, which
executes the notification fetching functionality:

3.1 First the bound information is extracted from the subscription, converting F’ again in F.

3.2 The caching data structure processes the subscription (as indicated in Pseudocode 4.3 in page
27). This involves the allocation of an index entry (if none identical is found) and the retrieval of
existing matching notifications. With these notifications (if any, and considering the specified bound)
a reply is created.

3.3 This newly created reply is delivered back to the Local Event Broker as an special adminis-
trative reply event.

3.4 The subscription forwarding process proceeds as usual for the routing algorithm, except that
now F is forwarded instead of F’. This might involve the forwarding of F to other neighbor event
brokers.

4. At some point in time, the Local Event Broker receives from link ` the administrative event identified
as a reply, which fires its execution handling:

4.1 - 4.3 Each of the events contained in the reply are unpacked and delivered back to the client
through the traditional notify() callback method.

4.4, 4.5 Blocked events received in the meantime by the Local Event Broker which didn’t come
from the link ` and that were locally stored in the associated queue are afterwards delivered, if any.

4.6 Next, the routing entry associated to F is released from the held state, cleaning up its asso-
ciated notification queue.

The only potential complication with this approach would be that notifications received in the
meantime at the Local Event Broker already fulfill the request. If this alternative to the main flow
of events occurs, waiting for the reply is no longer necessary because the notifications included in
it would be too old. Hence, the locally queued notifications are automatically delivered and the
queue is disposed. With this modification, the bootstrapping delay of a consumer is guaranteed
to be no larger than without recent history in the worst and better in the average case. On the
other hand, in order to provide a fault-tolerant strategy, it would be clever to also set a timer
when a subscription is set on hold. In case the Border Broker is too slow or suddenly down, it
is preferable to let the routing algorithm to effectively deliver queued notifications instead of keep
blocking them, perhaps forever. In both cases (local queue fulfilled request or time-out received),
if the reply eventually arrives later, it can simply be discarded.

In an analogous way, the unsubscription forwarding process indicates to the caching structure
that the buffered entries are no longer needed and can be disposed. This strategy is a little bit more
complicated than the previous one. Though, the biggest problem which is mixing new notifications
with the reply is quite straightforward to solve. The reply is prepared only at the Border Broker so
new notifications cannot overtake the reply. Next we enumerate a brief advantages and drawbacks
list:

4 In comparison with the previous approach, the quality of service is enhanced because each
cone embraces more distinct subscriptions than each Local Event Broker can.



4.4. CACHE QUERYING 35

4 The workload is delegated to the middleware: the processing is mainly performed at the
infrastructure itself (in contrast with the home stub layer), while the notification storage is
completely done at the Border Brokers.

4 The whole interaction protocol is built upon the existing links. It is not necessary to create
new sockets or communication channels. Only a new Reply administrative message must be
recognized.

5 Although this strategy doesn’t have requirements from the infrastructure, filter forwarding
routing algorithms like Simple Routing or Covering-based Routing assume that it is possible
to uniquely identify each filter, restricting the possible deployment configurations it can be
used with.

5 When a client issues a subscription and its Border Broker doesn’t have enough past notifica-
tions to fulfill the request but a neighbor does, this strategy can’t do nothing about it (i.e.,
there are no cooperative actions between neighbor event brokers).

Though with a k value of 2 the QoS is enhanced, the restriction to search only for notifications
at the Border Broker needs to be suppressed for practical relevance. Next we develop another
strategy where k is extended up to an arbitrary number.

4.4.3 Merging Caching

The last drawback mentioned in the previous approach leads to another strategy. In a real environ-
ment it is reasonably to think that each Event Router will be deployed on machines with different
processing and storage capabilities. This variability in the Event Routers’ storage capabilities can
be translated into different caching structures sizes, or, more precisely, different values for MaxIn-
dexedFilters and MaxFilterBuffers. Be that as it may, it could happen that the desired number of
past notifications may not be available at the Border Broker.

Furthermore, in a more complex scenario, several clients might concurrently produce information
which is consumed by other clients. For example, in Figure 4.13 we extend the scenario of Figure
4.10 where both producers X5 and X6 are publishing notifications that match the client X1’s
subscription’s filter F. Initially, client X1 has issued a subscription with a filter F, and given that
Simple Routing is being used, F was spread across the broker’s network.

Figure 4.13: Multiple producers scenario

Now assume that client X3 issues a subscription with a filter G (which is covered by F ), and
a bound of 50 notifications. With the previous approach, the best effort that can be achieved



36 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

is to fetch and deliver the notifications from Border Broker ER1. Client ER1 could have only
25 notifications stored (e.g., ER1’s MaxFilterBuffers value is 25), though. Nevertheless, stored
somewhere else upstream in the broker’s network, we could find other matching notifications, which
would have been delivered if the client had effectively subscribed there earlier. This is the case for
broker ER3 if its MaxFilterBuffers value is greater than 50, for instance.

Even when every broker has the same MaxFilterBuffers value the strategy performs better, since
as the query gets closer to individual producers, the notifications stored in each broker’s cache will
belong to less producers. For example, client X2’s new subscription will result in two new delivery
paths: < LB2, ER1, ER3, ER2, LB5 > and < LB2, ER1, ER3, ER4, LB6 >. For these paths,
the Event Router ER3 is also called a junction broker, because it is the junction point for several
delivery paths. On one hand, brokers ER1 and ER3’s caches store notifications both from producers
X5 and X6. On the other hand, broker ER2’s cache only stores notifications from X5, while broker
ER4’s cache only stores notifications from X6. The basic idea of this approach is to extend the
number of queried brokers up to the point where the query reaches individual producers. Instead
of considering only notifications stored at the Border Broker, the former could decide to further ask
its neighbor Event Routers for more notifications which could be stored somewhere else upstream
in the network.

The addition of the caching feature at the Event Routers is illustrated in Figure 4.14. Attached
to the Event Routers’ routing engines can be seen the representations of the caching data structure
instances (note their different sizes).

Figure 4.14: Merging Caching deployment

Some difficulties arise in supporting this caching behavior. First, upon a replay request, an
Event Router ERx (be it a Border Broker or an Inner Broker) will check if it can fulfill the request
with its own stored notifications. If this is the case, the reply is created and delivered back to
the requester. If not, the broker should query all peers (lets say, ERy) in order to get a better
estimation of past notifications. Hence a mechanism must be devised that allows to manage which
peer brokers have been queried and which of them have already delivered its reply. A solution to
this problem is the following: when the broker’s caching structure doesn’t have enough notifications
stored, an empty reply is created on hold, and an empty list is attached to the reply. This list will
contain the brokers that the reply is waiting for. Each queried broker is inserted in this list. When
a reply is received from broker ERy, it is removed from the reply’s brokers waiting list and its
notifications are merged with those of the held reply. Finally, when all replies have been received
(which is recognized because of an empty waiting list), broker ERx can deliver the reply back to
the original requestor. This overall reply contains notifications already stored in ERx’s caching
structure, merged with those received in the peer replies.



4.4. CACHE QUERYING 37

The second difficulty is that, in general, a specific ordering cannot be assumed between replies
from different peers. Reply processing may be based on first-come-first-serve, random interleaving,
or timestamp ordering if logical or global-time clocks are presupposed. However, only replies from
ERx’s own caching structure will have the order of notifications the consumer would have observed
if it had subscribed earlier. Next, we propose a scheme for this issue that doesn’t imposes any
requirements.

The notification processing described in Pseudocode 4.2 in page 26 is modified: each incoming
notification is registered along with the broker’s link from where it came from. Thus, it is possible
to ask a broker’s caching structure for stored notifications which didn’t come from a specified link.
With this new functionality, the broker querying can be extended to an arbitrary deep level (i.e.,
k value).

We illustrate this behavior with the previous example. Client X3 issues the subscription for
filter G and a bound of 50 notifications, so just as with the previous approach LB3 forwards a
BoundedFilter containing G and the bound. The caching structure of the Border Broker ER1

might have notifications stored which came from LB1, LB2, LB3 and/or ER3. If they aren’t enough
to fulfill the requested bound, ER1 decides to ask its neighbor brokers for more notifications. Since
the ordering of notifications relative to the source is fixed, replies will include the same most recent
notifications which allows to drop as many notifications from a reply as already present in ER1’s
caching structure for this source. Otherwise, duplicates might be delivered.

In turn, if notifications stored in ER3 that didn’t came from ER1 are not enough to fulfill the
requested bound, ER3 decides to ask its neighbor Event Routers for more notifications (in this case,
it can ask ER2 and ER4), and so on. Note that at Event Router ER2 and ER4 the strategy will
find only notifications published by producer X5 and X6, respectively, which was the goal of this
strategy. As an Event Router receives the requested replies, it goes merging them by dropping as
many notifications as already present in its caching structure for the reply’s source.

Timers can also be used with this approach. Though, the difference lies in that as the strategy
searches deeper in the broker’s network, the timers must be set up with shorter periods. Thus,
the bound could also carry information about the k value so far, which is used to set the timers
for requests at level k. Another scheme could be to let the client specify the timer’s value and
recursively divide this value into fractions when a broker decides to ask its neighbors for further
notifications.

Just as with the previous approach, the Local Event Broker blocks those notifications that should
be delivered to the client which were received in the meantime between the reply is requested and
it is effectively received. When the reply eventually arrives from link `, the amount of blocked
notifications that came from link ` is compared to the reply size: if the former are more, the
latter are dropped and viceversa. On the other hand, if the retained notifications already fulfill the
request or the timer expires, they are automatically delivered. The subscription is unset from the
held state and the reply is disposed.

Next, we enumerate the main advantages and drawbacks of this approach:

4 By extending k ’s value up to an arbitrary number, the number of considered notifications is
enlarged, making the strategy completely independent from the nearby clients’ similarity of
interests.

4 The strategy takes advantage of variable storage capabilities of the event routers, which is
more reasonable in a real environment.

5 Brute force is used when locally stored notifications don’t fulfill the requested bound, hence
unnecessary requests might be issued to subnets where no producers exist.

As with the previous approaches, the mentioned drawbacks leads to other optimizations. In
the next subsections we develop further extensions that are not exceptions: first, we show how to
support other (more complex) routing algorithms; and then, we illustrate how to avoid unnecessary
requests when Advertisements are used.



38 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

4.4.4 Caching with more complex Routing Algorithms

Up to this point, the caching strategies were shown in conjunction with Simple Routing. With this
algorithm, new and cancelled subscriptions are simply flooded into the broker’s network such that
they reach every broker. Therefore, the buffer fetching interaction between brokers was tied to the
subscription forwarding process, performing both operations atomically in order to prevent missing
notifications.

Figure 4.15: Covering-based Routing: initial deployment

Figure 4.16: Covering-based Routing: subscription forwarding (1)

Nevertheless, when other routing algorithms are being used such as Identity-based Routing or
Merging-based Routing, the subscription forwarding process might stop at some point in the broker’s
network. Each broker intelligently selects which brokers to forward a filter. We will illustrate the
behavior of one of such algorithms: Covering-based Routing. In Figure 4.15, the initial state of the
routing tables is shown, which is similar to that of Figure 4.8 for Simple Routing. The subscription
process is depicted next. In Figure 4.16.a, X1 subscribes to F. The filter is flooded across the
network, also like Simple Routing. The optimization arises for the subsequent subscriptions, though.
In Figure 4.17.b, X2 subscribes to filter G, which is covered by filter F (i.e., N(F ) ⊇ N(G)). As



4.4. CACHE QUERYING 39

Figure 4.17: Covering-based Routing: subscription forwarding (2)

it can be seen, ER1 did not propagate G to LB3 nor ER3: it knows that they already will forward
notifications in ER1’s direction because of another (broader) filter, F, previously forwarded. This
avoids unnecessarily forwarding the filter to other brokers, which neatly reduces the network traffic
and the routing table sizes.

The problem with these routing algorithms is how to make an Event Router ERx request a reply
from broker ERy when the routing algorithm has decided not to forward the subscription (which
would include the tied request). For example, if client X6 is a producer of notifications matching
filter G and has been publishing notifications prior X2’s subscription, these notifications will be
stored in all brokers at the delivery path < LB1, ER1, ER3, ER4, LB6 >. Later, when client X2

issues its subscription for filter G, the filter forwarding process doesn’t go beyond ER1. Not enough
notifications could be cached there, though.

A simple solution to this problem is to create a special administrative message, Fetch, which
includes the filter as well as the bound. This message is handled in the same way a BoundedFilter
is, but only regarding the caching actions, that is to say, the received subscription in a Fetch message
is not registered in the routing table. Next we develop how to extend the brokers interaction in
order to forward these Fetch messages.

On one hand, at the requestor’s side we could identify two sets of destinations links:

• Lra, the set of destinies selected by the routing algorithm, and

• Lcs, the set of destinies selected by the caching strategy4.

Just as with Simple Routing, a BoundedFilter can be forwarded to those brokers whose link
is in Lra. In contrast, to those brokers whose link is in Lcs - Lra, the Fetch message is forwarded.
This ensures that a reply request will be sent to every neighbor broker, even to those which weren’t
selected by the routing algorithm.

On the other hand, at the replier’s side, the caching structure will have to create replies because
of two kind of arriving events:

1. Administrative Fetch events which explicitly express the request for a reply.

2. Administrative subscription forwarding events which implicitly include a tied request for a
reply (this is checked by inspecting the forwarded filters for a PastBound).

4By now, Lcs = {all but the link where the original request came from}, but in the next subsection we show how
Lcs can be shrinked when Advertisements are used.



40 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

With this extension, the proposed caching strategies can be used with the other, more com-
plex, routing algorithms. Now, though, the main disadvantage of extending the caching strategy
to support other routing algorithms becomes clear: the goal of these algorithms, which is to avoid
forwarding and storing the filter in some of the neighbors, is lost. By forcing the broker to forward
the filter in spite of the routing strategy’s decision, not only the network traffic is degraded but the
storage is, because although the neighbor’s routing table will not store a routing entry for it, the
caching structure will. This tradeoff can not be avoided since the caching structure needs to know
what to reply to (i.e. notifications matching which filter), as well as under which index entry to
store the notifications.

Next, we show how to shrink the set Lcs in order to avoid unnecessary requests.

4.4.5 Caching with Advertisements

Advertisements are filters that are issued by clients to indicate their intention to publish certain
kinds of notifications and only notifications matching an active advertisement of the respective
producer should be delivered to interested consumers.

In the context of content-based routing, advertisements can be used as an additional mechanism
for further optimization because it is sufficient to forward a subscription only into those subnets
where matching events can be produced, i.e., where a client has issued an advertisement that
overlaps with the given subscription. If advertisements are utilized for optimized routing, each
broker manages two routing tables, the known subscription-based routing table and an additional
advertisement-based routing table.

Figure 4.18: Simple Routing with Advertisements: initial deployment

As it was previously said in Section 2.5.2, a second routing table is managed by every broker. We
illustrate the usage of Simple Routing with Advertisements in Figure 4.18. While the subscription
routing tables (on the top part) are used to route notifications from producers to consumers, the
advertisement routing tables (on the bottom) are used to route subscriptions from consumers to
producers: a subscription is only forwarded to a neighbor if it overlaps with an active advertisement
that has been received from this neighbor before. Formally, a filter F1 overlaps another filter F2

(denoted F1 u F2) iff N(F1) ∩ N(F2) 6= ∅.
This advertisement routing table is maintained by the same algorithms as the subscription

routing table, i.e., by forwarding new and cancelled advertisements through the broker network.
For example, in Figure 4.19.a, client X6 advertises filter F. The advertisement is flooded across the
network through appropriate administrative messages and is registered in the respective tables.



4.4. CACHE QUERYING 41

Figure 4.19: Simple Routing with Advertisements: advertisement forwarding

Figure 4.20: Simple Routing with Advertisements: subscription forwarding

The optimization arises when a client issues a subscription. In Figure 4.20.b, client X7 expresses
its interests for filter G, which overlaps with F. As it can be seen, in spite of using Simple Routing,
the subscription is only forwarded towards X6, which is the only client who can produce matching
notifications.

All of the exposed above directs us to an obvious caching optimization. The information con-
tained in the advertisements table explicitly indicates where to find producers for a given filter (i.e.
through which links). Hence, when an Event Router doesn’t have enough notifications stored, it
can avoid asking every peer but to selectively check which links point to potential producers. This
neat optimization is easy to incorporate to the previously described approach. First we redefine
set Lra and Lcs for a request for filter F :

• Lra, the set of destinies selected by the routing algorithm, and

• Lcs, the set of destinies for which there exists an advertisement entry <H, ERy>, where H
overlaps F.

Now we analyze what to do with sources at each one:



42 CHAPTER 4. CACHING STRATEGIES: ANALYSIS

• The links in Lra-Lcs will be used to forward the filter as normal.

• The links in Lcs-Lra will be used to forward the fetch() message.

• The links in Lra ∩ Lcs will be used to forward the BoundedFilter (i.e., tied both the filter
and the request).

With this optimization, each broker receives the appropriate message even when Advertisements
are used.

4.4.6 Considering the Time Dimension

Issued subscriptions can be also specified with a time bound. In this case, the subscription asks
for notifications that have been published m minutes in the past (relative to subscription time).
A first approximation could be achieved by synchronizing the clocks of all border brokers. In this
way, at publishing-time Border Brokers attach a timestamp to notifications in order to represent
the time when they have entered into the pub/sub system. At subscription-time the border broker
sets the time bound by simply subtracting the relative bound of the subscription from its local,
synchronized time. This time reference is then used by the algorithm to search in the broker
network for matching notifications with a newer timestamp.

Moreover, a combination of number of notifications and time into the past could also be useful,
i.e., the last ten notifications within the last five minutes. This combination constrains the search
in the buffers of the broker network. That means that there are two criteria to stop the search: (a)
once the number of notifications within the reference achieves the solicited number, or (b) once a
timestamp older than the reference is found.

4.5 Summary

In this chapter, several caching strategies have been developed that differ in several aspects like
simplicity, effectiveness of notification fetching, memory overhead, etc. As it can be foreseen, other
strategies could continuously emerge as a result of the planned or observed usage of the notification
service.

On one hand, as more requirements from the infrastructure can be enforced, further optimiza-
tions can be made. For example, by providing globally unique broker IDs, each notification could
be enclosed in an envelope with the ID of the producer’s border broker along with a sequence
number. This information can be used to shift the task to detect and eliminate duplicates at the
event brokers. Such sequence numbers can be leveraged to eliminate duplicate sending. Requests
for replies would include the sequence number of the oldest notification from a given producer still
contained in the broker caching structure. This would avoid sending notifications that are known
in advance that will be dropped.

On the other hand, it was shown that the applicable caching strategies depend on the deployment
configuration of the notification service. The idea is to allow the network administrator to configure
the notification service according to the deployed application’s requirements. An initial guideline
for this is resumed in Figure 4.21. The graphic is organized in three axis with several alternatives for
each one: Routing Algorithms (Flooding, Simple Routing, Identity-based Routing, Covering-based
Routing and Merging-based Routing), Caching Strategies (Local Broker Caching, Border Broker
Caching and Merging Caching) and Usage of Advertisements (With / Without), respectively. The
graphic presents two planes: each plane illustrates the allowed combinations of Routing Algorithm
/ Caching Strategy when Advertisements are used (rear plane) or not (frontal plane). These
alternatives are resumed next:

1. As we said initially, when the routing algorithm in use is Flooding, the only chance is to
use Local Broker Caching. Moreover, Advertisements cannot be used in combination to this
algorithm.



4.5. SUMMARY 43

Figure 4.21: Notification Service possible configurations

2. A more effective strategy like Border Broker Caching can be used in conjunction with Simple
Routing.

3. When several producers exist in the network and the event brokers storage capabilities are
variable, Merging Caching can be applied. In conjunction with Simple Routing, every request
for a reply is tied to the filter forwarding process.

4. If Advertisements are used, the caching strategy can take advantage of the information already
present in the advertisements table to further select where to request a reply and where not.

5. Routing algorithms more complex than Simple Routing can also be utilized in conjunction
with Merging Caching. Nevertheless, as we said previously, there is a tradeoff between these
routing algorithms and the caching strategy since both network traffic and storage space will
not be optimized.

In the next chapter we proceed with the design and implementation phases of the caching
concern. As we will see, the task is divided in two steps: the architectural means that provide a
framework for different strategies to run, and the caching strategies themselves that are mappings
from the ideas arrived in this chapter.



44 CHAPTER 4. CACHING STRATEGIES: ANALYSIS



Chapter 5

Caching Strategies: Design and
Implementation

This chapter presents the design and implementation’s decisions taken in order to develop the
caching strategies. We begin by analyzing two architectural approaches. Next, we chose one and
show how to progressively move from the architecture to the implementation with the help of
different diagrams that guide the solution. Finally, we close the chapter with an analysis of the
developed solution.

5.1 Architectural approach

The first design task was finding architectural means in order to incorporate the caching strategies
into the Rebeca notification service. After understanding that these strategies are heavily related
to the routing algorithms, and after reading, running, testing and working with the source code
responsible of the routing algorithms (Figure 5.1), we looked for a clean and adequate way to add
this responsibility to the notification service.

By observing the common interface necessary for the caching strategies, we detected that basi-
cally a mechanism to intercept the messages sent to and received from the RoutingEngine objects
was needed. Hence, two approaches came out which are described and compared below.

5.1.1 The OOP way

The first idea consists of adding a new responsibility to the RoutingEngine. One way to add
responsibilities is by applying inheritance. Inheriting a CachingEngine from the RoutingEngine
class puts the caching responsibility to every subclass instance. This approach is simple but inflex-
ible at least for two reasons. First, the choice of caching is made statically: the objects which use
the CachingEngine (particularly an EventBroker or an EventRouter) can’t control how and when
to add the responsibility to a RoutingEngine. Second, and more important, the RoutingEngine
class already has its own hierarchy of subclasses that represent different algorithms for the routing
concern. Thus, inheriting a CachingEngine class for every RoutingEngine subclass, trying to cover
every combination of responsibilities statically, would yield an undesired class explosion.

Nevertheless, a more flexible approach was explored. The solution was enclosing the Routing
Engine component in another object that adds the caching. A generic solution for this kind of
problem was described in [18], who call the enclosing object a decorator. This design pattern is
designed to add responsibilities to objects without subclassing. In our problem, the decorator
component was called a CachingEngine, and a superclass of both classes was generalized as an
Engine, who defines the interface that clients expect to use (Figure 5.2). This CachingEngine
conforms to the interface of the component it decorates (i.e. implements the Engine methods) so
that its presence was transparent to the component’s clients (EventBrokers and EventRouters).

45



46 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Figure 5.1: Rebeca’s routing class hierarchy

The decorator forwards requests to the component and performs additional actions (before,
after or both) in order to cache or deliver the incoming notifications or Events. Specific subclasses
of CachingEngine were the ones who actually implemented the caching strategies, for instance
in the LocalBrokerCachingEngine class. This scheme’s transparency also allows for a dynamic
addition and removal of an unlimited number of responsibilities at runtime.

While this approach promotes a separation of the concerns routing efficiency and caching, it
presents at least a number of disadvantages, as well:

• The Engine hierarchy becomes quickly difficult to understand because now its purpose is
twofold. The CachingEngine subclasses have names rather long which indicates a heavy
composition of functionality.

• Client’s code can’t rely on object identity now, since from an object identity point of view,
the decorator objects (the CachingEngines) are not identical as the decorated components
themselves (the RoutingEngines).

• It is not clear how will the clients transparently handle CachingEngine objects, which is one
of the requirements elicited in Section 4.1 (page 21).

– Some of the source code of the clients classes must be edited in order to appropriately
create instances of these classes. This produces code related to the caching concern that
is not modularized (i.e., is spread around several classes and methods), is difficult to
reason about and difficult to change.



5.1. ARCHITECTURAL APPROACH 47

Figure 5.2: The Decorator design pattern approach

– The RoutingEngine class and its subclasses are packaged in the rebeca.routing pack-
age, which would be no longer an appropriate name for it since it will contain caching-
related classes. Renaming this package to rebeca.engine involves editing the source
code. Moreover, this package would contain only the Engine class, while two new sub-
packages rebeca.engine.routing and rebeca.engine.caching should be created as
well, generating further changes.

• Finally, source code related to caching (e.g., the new subscribe(..) method) crosscuts
source code related to routing. This led to an artificial Engine class that is a mixture of
the needed methods of both concerns. Hence we are producing code that is not easy to
understand nor maintain.

In the next section we will show how an architectural approach based on Aspect-Oriented
Programming provides a solution to each of these disadvantages.

5.1.2 The AOP way

Aspect-Oriented Programming (AOP) mainly aim is to support separation of concerns. This means
a way of modularizing crosscutting concerns much like Object-Oriented Programming is a way of
modularizing common concerns. We refer the reader to Appendix A to get an introduction to
aspect-oriented software development. In order to appropriately start working with AOP, we go
back to the requirements stage. Here we start using the mechanisms proposed in [27] to handle
non-functional requirements, by following three steps:

1. Crosscutting concerns: Identification of the non-functional requirements: the quality of Re-
sponse Time crosscuts the Routing Algorithm concern. Hence, we’ve found what they call a



48 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Crosscutting Concern Caching
Description Bootstrap latency of

subscription process
should be as minimal
as possible (if not zero)

Priority Max
List of Requirements Performance, Response Time
List of Models Use cases:

SubscribesToInterest
UnsubscribesFromInterest
AdvertisesInformation
UnadvertisesInformation
PublishesNotifications
GetsNotified

Table 5.1: Specification of the crosscutting concern Caching

candidate aspect or aspect for simplicity, and we will call it Caching. This aspect is specified
using a template in Table 5.1.

2. Functional requirements: Traditional specification of functional requirements. This item has
already been developed in Section 4.1 (page 21).

3. Composed requirements, which in turn consists of two parts:

• First, composing functional requirements (modeled using UML) with aspects. With this
purpose, three concepts define how can the composition be arranged:

– Overlapping, when the requirements of the aspect modifies the functional require-
ments they transverse. In this case, the aspect requirements may be requested before
the functional ones, or they may be requested after them.

– Overriding, when the requirements of the aspect superpose the functional require-
ments they transverse. In this case, the behavior described by the aspect require-
ments substitutes the functional requirements behavior.

– Wrapping, when the requirements of the aspect “encapsulate” the functional re-
quirements they transverse. In this case, the behavior described by the functional
requirements is wrapped by the behavior described by the aspect requirements.

In our case, we’ve chosen to wrap the functional requirements, which is the more flexible
(but also complex) option.

• Second, try to resolve conflicts that may arise from the aspect composition process. Since
there is only one aspect, Caching, no conflicts arise. Otherwise a decision would had
to be made in terms of which crosscutting concern should have the maximum priority.
Just as examples, other aspects within Rebeca could be Security, Transaction handling,
usage of Advertisements, etc.

This process yields the diagram of Figure 5.3, which is an evolved version of Figure 2.8 at page
15. As a result from this section, we proceed by describing how we arrived to the concrete design
and implementation of the mentioned Caching concern.

5.2 Design and Implementation with AOP

A great challenge in the modeling, design and implementation phases is to concentrate at one
problem at a time and abstract from others. Good design models only display the information



5.2. DESIGN AND IMPLEMENTATION WITH AOP 49

Figure 5.3: UML Use Case diagram involving the Caching aspect

essential for a specific purpose and abstracts from others. While AspectJ provides a suitable
aspect-oriented programming language, no feasible standardized modeling language is at hand that
supports the design of AspectJ programs, at the moment. Hence we have chosen different diagrams
and UML extensions to further describe our ideas.

5.2.1 Caching Design

As suggested in the previous section, the focus of this stage is the design of the Caching aspect.
Such a generic entity like the one shown in Figure 5.3, though, only provides superficial information
on where and how (i.e., overlapping, overriding or wrapping) the aspect will participate. Actually,
what we need is a model that provides a generic framework that allows different caching strategies
to be implemented such as those described in the previous chapter.

High Level Architecture

A common denominator that it’s clear from the diagrams of Figure 4.4 to 4.20 is that the caching
actions are related to the RoutingEngine’s activities, for instance:

• in reaction to subscribing and unsubscribing clients,

• in reaction to publishers advertising a filter or publishing an event,

• in reaction to brokers receiving administrative or data events, etc.



50 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

On one hand we must accept the non-avoidable high cohesion between the RoutingEngines and
the caching actions. In other words, caching actions crosscut the core routing functionality. On
the other hand, in Section 5.1.1, we saw the drawbacks of pure object-oriented designs. Moreover,
since the beginning a strong requirement was not to modify existent source-code, hence there was
not even a chance to produce tangling code.

This led us to design a model that allows different caching strategies to be plugged. As a result, a
combination of aspect-oriented facilities with object-oriented frameworks was used. Our approach is
based in the non-invasiveness of AOP to allow a clear division of the base code from the new caching
concern, while takes advantage of inheritance and polymorphism at the same time. The overall
architecture is depicted in Figure 5.4. The diagram shows the RoutingEngine class, its clients
(EventBroker and EventRouter classes) and its delegatees (RoutingTable and EventProcessor
classes). Moreover, it shows that messages sent to and received from a RoutingEngine are somehow
intercepted by an abstract specialization of it, called CachingStrategy. Here is where AOP comes
into play. Note that in contrast with Figure 5.2, CachingStrategy subclasses’ names are shorter
and only represent what they are (in contrast to OOP where caching and routing would be mixed).

Figure 5.4: High level architecture

Next we go on with a detailed description of this idea by describing more precisely how AOP
intervenes in the design.

Intercepting the Execution

The main effort of the modeling task is to identify a structure for the crosscutting concern by
inspecting the routing behavior, in order to detect which are the well-defined points in the program
flow [2] that need to be intercepted. A common task used by designers to perform this detection is to
insert simple print lines of code at those points they are interested in (e.g., System.out.println(..)
instructions). To achieve this in a more clear and elegant way, [2] proposes the usage of a devel-
opment aspect. As it name indicates, development aspects are aspects that can be used during



5.2. DESIGN AND IMPLEMENTATION WITH AOP 51

the development of an application. These aspects facilitate debugging, testing and performance
tuning work. The aspects define behavior that ranges from simple tracing, to profiling, to testing
of internal consistency within the application. They make it possible to cleanly modularize this
kind of functionality, easily enabling and disabling the functionality when desired. Starting from
a simple kind of aspect like that, we have progressively worked out the Caching aspect by select-
ing the crosscutting execution points (a.k.a. joinpoints) that a generic caching strategy needs to
perform its actions. In order to identify these joinpoints for practical use, we have defined several
pointcuts. A pointcut is like a named predicate on joinpoints that can match or not match any
given joinpoint. Also, a pointcut can compose other joinpoints or pointcuts by means of the logical
operators and (spelled &&), or (spelled ||), and not (spelled !). This allows the creation of very
powerful pointcuts from the simple building blocks of primitive pointcuts.

A major issue in designating these pointcuts is to define them the more precise as possible
in order to prevent erroneous interceptions, e.g., by accidentally intercepting calls from unknown
classes and methods. Hence we proceed by carefully describing and illustrating which these point-
cuts are. We provide both a textual description as well as the expression in the AspectJ language
that designates the pointcut. These pointcuts’ list is as follows:

➊ The first pointcut that we need is related to the instantiation of CachingStrategy objects
(Figure 5.5). Whenever a RoutingEngine object is initialized with a no-args constructor
(i.e., new()), the execution will be intercepted and a CachingStrategy object is attached to
it. The instantiation is performed by reflection on information provided by the environment.
The pointcut is defined by the following expression:

pointcut initRoutingEngine():

initialization(RoutingEngine.new());

Figure 5.5: Pointcut to create CachingStrategy objects

➋, ➌ The next pointcuts’ goal is to associate the subscriptions and advertisements RoutingTables
used by the RoutingEngine to the CachingStrategy (Figure 5.6). Caching strategies might
need this information to take their decisions. Whenever the RoutingEngine instance vari-
ables fields named subEntries or advEntries are to be set within the code of the no-args
constructor method, the execution is intercepted. A reference to the new value is passed to
the CachingStrategy object, which preserves it. The pointcuts are defined by the following
expressions:

pointcut initSubscriptionEntries():

withincode(RoutingEngine.new()) && set(RoutingTable RoutingEngine.subEntries);

pointcut initAdvertisementEntries():

withincode(RoutingEngine.new()) && set(RoutingTable RoutingEngine.advEntries);



52 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Figure 5.6: Pointcuts to pass the RoutingTables to CachingStrategy objects

➍ Similarly to the previous pointcuts, the next pointcut’s goal is to associate a broker’s neighbors
list to the caching object (Figure 5.7). This list is required when more complex routing
algorithms are used by the brokers, in order to force forwarding caching requests to other
neighbors not selected by the router. Whenever the RoutingEngine instance variable field
named procs is to be set within the code of the no-args constructor method, the execution
is intercepted. A reference to the new value is passed to the CachingStrategy object, which
preserves it. The pointcut is defined by the following expression:

pointcut initProcessors():

withincode(RoutingEngine.new()) && set(Collection RoutingEngine.procs);

Figure 5.7: Pointcut to pass the neighbor EventProcessor’s collection to CachingStrategy objects

➎ The following pointcut crosscuts the subscription process (Figure 5.8). It is defined as the in-
tersection between two joinpoints: the first of them is within the code of the LocalEventBroker’s
subscribe(..) method; while the second is when the RoutingEngine’s addSubscription(..)
method is called and returns or throws. Different caching strategies will perform different
actions in this pointcut, so they are advised before and after it. The pointcut is defined by
the following expression:

pointcut subscription():

withincode(void LocalEventBroker.subscribe(Subscription,EventProcessor)) &&

call(void RoutingEngine.addSubscription(Subscription, EventProcessor));



5.2. DESIGN AND IMPLEMENTATION WITH AOP 53

Figure 5.8: Pointcut to intercept subscriptions

➏ Analogically to the previous item, this pointcut crosscuts the unsubscription process (Figure
5.9). It is defined as the intersection between two joinpoints: the first of them is within
the code of the LocalEventBroker’s unsubscribe(..) method; while the second is when
the RoutingEngine.removeSubscription(..) method is called and returns or throws. The
caching strategies might perform some activities in this pointcut, so they are advised here
too. The pointcut is defined by the following expression:

pointcut unsubscription():

withincode(void LocalEventBroker.unsubscribe(Subscription)) &&

call(void RoutingEngine.removeSubscription(Subscription));

Figure 5.9: Pointcut to intercept unsubscriptions

➐ Clearly, the arrival of a message at a broker is an event of interest to the caching strategies.
They might register it in their data structure for future consumers, perform administrative
actions, or just discard it. The pointcut crosscuts the event processing by the routing al-
gorithm (Figure 5.10). It is defined as the intersection between two joinpoints: the first of
them is within a RoutingEngine anonymous Thread’s1 run() method; while the second is
when the RoutingEngine’s processEvent2(..) method is called and returns or throws. The
pointcut is defined by the following expression:

pointcut eventProcessing():

within(RoutingEngine) &&

call(void RoutingEngine.processEvent2(Event, EventProcessor));

1This thread’s duty is to repeatedly route events taken from a queue as they are asynchronously added into it.
Despite being anonymous, we call it RoutingEngineThread in the diagram.



54 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Figure 5.10: Pointcut to intercept event processing

➑ Another happening of interest for the caching strategies to react occurs when the routing
algorithm forwards an administrative event containing subscriptions and unsubscriptions
to a neighbor broker. The pointcut crosscuts this happening at the SimpleRouting class,
since the Flooding algorithm doesn’t forward administrative events (Figure 5.11). It is de-
fined as the intersection between two joinpoints: the first of them is within the code of
the SimpleRouting’s forwardSubsAndUnsubs(..) method; while the second is when the
EventProcessor’s process(..) method is called and returns or throws. The pointcut is
defined by the following expression:

pointcut forwardSubsAndUnsubs():

withincode(void SimpleRouting.forwardSubsAndUnsubs(Vector, Vector, EventProcessor)) &&

call(void EventProcessor.process(Event));

Figure 5.11: Pointcut for subscriptions and unsubscriptions forwarding

➒ Last but not least, the set of destinations chosen by the routing algorithm to forward an
event to neighbors and/or clients is also important for a caching strategy. For instance, if the
destination chosen for an event is currently blocked, it shouldn’t receive the event but retain it.
This is handled by the caching strategies accordingly. The pointcut crosscuts the destinations
selection by the routing algorithm (Figure 5.12). It is defined as the intersection between two
joinpoints: the first of them is within the code of the RoutingEngine’s processEvent2(..)
method; while the second is when the RoutingTable.getDestinations(..) method is called
and returns or throws. The pointcut is defined by the following expression:

pointcut getDestinations():

withincode(void RoutingEngine.processEvent2(Event, EventProcessor)) &&

call(Set RoutingTable.getDestinations(Event));



5.2. DESIGN AND IMPLEMENTATION WITH AOP 55

Figure 5.12: Pointcut for event destination selection

Note that these pointcuts pick out joinpoints, but they don’t do anything apart from that.
Actually, they demarcate where a caching strategy might be applied. To actually implement cross-
cutting behavior, we use advices. An advice brings together a pointcut (to pick out join points)
and a body of code (to run at each of those join points). These pieces of code are the ones which
implement the functionality of directing the execution towards the associated CachingStrategy
object.

Introducing Type Members

We have deliberately avoided an important issue so far that is how to incorporate the new subscribe(..)
method with the signature previously described in Figure 3.2 (page 19) to the EventBroker’s inter-
face, without changing the source code. Again, AOP provides another powerful concept, the open
classes. Within the AspectJ jargon, it is possible to use inter-type declarations. AspectJ’s inter-
type declarations (a.k.a. introductions) are declarations that cut across classes and their hierarchies.
They may declare members that cut across multiple classes, or change the inheritance relationship
between classes. Unlike the advices, which operate primarily dynamically, introductions operate
statically, at compile-time.

We can declare the method necessary to implement the new caching capability, and associate
it to the EventBroker interface by means of the following AspectJ sentence:

public void EventBroker.subscribe(Subscription sub,

EventProcessor source,

PastBound bound);

As expected for a standard interface method, each class that implements the EventBroker inter-
face (i.e., the LocalEventBroker and DefaultEventBroker classes) must implement this method
too, otherwise a compile-time error would be raised by the compiler. Thus, we also provide the
implementations of the introduced method for each of these classes, accordingly. On one hand, a
DefaultEventBroker doesn’t truly implement a broker, but rather delegates all calls to a nested
EventBroker instance, hence this behavior is similarly replicated. A LocalEventBroker, on the
other hand, is the one who provides the real behavior. Here we simple attach the PastBound infor-
mation into the Subscription, and again delegate it to the subscribe(Subscription, EventProcessor)

normal method (which is intercepted later by the respective pointcut).
Provided that Subscription objects don’t know anything about carrying PastBound objects,

we define another set of introductions: a private field and associated setter/getter methods.

private PastBound Subscription.bound = null;

public void Subscription.setPastBound(PastBound bound) { this.bound = bound; }



56 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

public PastBound Subscription.getPastBound() { return this.bound; }

public boolean Subscription.isBounded() { return this.bound != null; }

public void Subscription.removePastBound() { this.bound = null; }

With this set of declarations, it is possible to attach PastBound information to a Subscription
object, without invading their source code.

In a similar fashion, RoutingEntry objects need to be able to block and retain, in a Reply
object, those notifications received in the meantime while a broker requests a reply and it effectively
arrives. Hence we define another set of crosscutting elements to implement the caching behavior
related to the held routing entry. First, we define the necessary inter-type declarations which allow
a RoutingEntry to have an associated Reply:

private Reply RoutingEntry.reply;

public void RoutingEntry.setReply(Reply reply) { this.reply = reply; }

public Reply RoutingEntry.getReply() { return this.reply; }

public void RoutingEntry.removeReply() { this.reply = null; }

public boolean RoutingEntry.isBlocked() { return this.reply != null && !this.reply.isBlocking(); }

Then, we define a pair of pointcuts that intercept the creation of RoutingEntry objects:

➊ When a client application issues a subscription, it is registered at its local broker. The
pointcut (Figure 5.13) is defined as the intersection between two joinpoints: the first of them
is within the code of the RoutingEngine’s addSubscription(..) method; while the second
is when a RoutingEntry’s new(Subscription, EventProcessor) initialization method is
called. The pointcut is defined by the following expression:

pointcut initSubscriptionRoutingEntry():

withincode(void RoutingEngine.addSubscription(Subscription, EventProcessor)) &&

call(RoutingEntry.new(Filter, EventProcessor));

Figure 5.13: Pointcut to initialize a RoutingEntry object

➋ When an administrative event arrives at an event router containing a collection of subscrip-
tions and unsubscriptions, many routing entries are created simultaneously. The pointcut that
crosscuts this behavior (Figure 5.14) is defined as the intersection between two joinpoints: the
first of them is within the code of the RoutingTable’s add(Collection, EventProcessor)
method; while the second is when the RoutingEntry’s new(Filter, EventProcessor) ini-
tialization method is called. The pointcut is defined by the following expression:



5.2. DESIGN AND IMPLEMENTATION WITH AOP 57

pointcut initForwardedSubRoutingEntry():

withincode(void RoutingTable.add(Collection, EventProcessor)) &&

call(RoutingEntry.new(Filter, EventProcessor));

Figure 5.14: Pointcut to initialize many RoutingEntry objects

The behavior for these pointcuts is similar: when a RoutingEntry is about to be initialized with
a Subscription that has PastBound information attached to it (which can be checked by calling
the isBounded() method), a new Reply object is attached to the former. This is implemented by
a couple of advice elements associated to each pointcut.

Finally, we also need a bidirectional reference between a RoutingEngine and its associated
CachingStrategy object. Instead of directly declaring an inter-type field at the RoutingEngine,
a slightly different design suggested in [2] was used. We have designed a HasCachingStrategy
interface, which has a field of type CachingStrategy, and related setter/getter methods.

public interface HasCachingStrategy{

private CachingStrategy cachingStrategy;

public CachingStrategy getCachingStrategy()

{

return this.cachingStrategy;

}

public void setCachingStrategy(CachingStrategy cachingStrategy)

{

this.cachingStrategy = cachingStrategy;

}

};

The main difference though relies in a special AspectJ declaration which states that any type
that is a RoutingEngine implements the public interface HasCachingStrategy. In this way, it is
possible to make any class implement the defined interface in a more flexible way.

declare parents: (RoutingEngine) implements HasCachingStrategy;

Putting it all together

As it was mentioned before, AOP mainly aim is to support separation of concerns. However, this
wouldn’t be useful if it didn’t provide means to modularize the concerns appropriately. In this
regard, AOP introduces a new modular unit, called aspect, to serve as container for crosscutting
elements. We have grouped the related pointcuts and declarations accordingly into respective
aspects.



58 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

To illustrate these aspects, the Aspect-Oriented Design Model [34] proposes the representation
of aspects as UML classes of a special stereotype (called ¿aspectÀ, in imitation to AspectJ’s
aspects). The aspects are supplied with tagged values that specify how the aspects are to be
instantiated. We have chosen to initialize aspects in a per-Java Virtual Machine basis.

Pointcuts can also expose part of the execution context at their join points in order to be of
practical use. Values exposed by a pointcut can be used in the body of advice declarations. Hence
the pointcut definitions are accompanied by the needed exposed values. In Figures 5.15, 5.16 and
5.17, the Caching, BoundedFilter and HeldRoutingEntry aspects are shown, respectively.

Figure 5.15: The Caching aspect

Figure 5.16: The BoundedSubscription aspect

5.2.2 Generic Behavior: Notification Storage

As it was depicted in Figure 5.4, the CachingStrategy class implements the notification storage by
delegating this duty to another class called EventCache. This class merely implements the steps for



5.2. DESIGN AND IMPLEMENTATION WITH AOP 59

Figure 5.17: The HeldRoutingEntry aspect

the data structure defined in Section 4.3 (page 23). The notification storage design (Figure 5.18)
is very simple and consists of a unidirectional relationship between the EventCache, EventQueue
and CountedItems classes. Their responsibilities are the following:

• The EventCache class is responsible for managing the overall data structure. Its objects
are initialized by specifying three parameters: MaxGlobalBuffers, MaxIndexedFilters and
MaxFilterBuffers. These integer values define the size of the event cache. With this informa-
tion, an index is created where each entry is composed of a Subscription and a LinkedList,
where received matching events are enqueued. This class also addresses the allocation, en-
queuing and dequeuing of notifications into the associated lists, and ensures that the size is
preserved.

• The EventQueue class is a simple wrapper for a LinkedList that adds operations for be-
having like a bounded size queue (restricted by the MaxGlobalBuffers value specified at the
instantiation).

• The CountedItem class is a generic object wrapper that provides methods that aids in the
process of having a reference counter for the wrappee.

5.2.3 Specialization of the Framework

In this section we illustrate how the caching strategies presented in the previous chapter are mapped
to the design. We have already illustrated the generic hooks that the Caching aspect provides. Fur-
ther, a generic CachingStrategy class was introduced in Figure 5.4 that implements the behavior
that is common to all caching strategies. Each strategy is encapsulated in its own class, forming
a class hierarchy depicted in Figure 5.19. Through the refinement mechanism of inheritance, each
class specializes the behavior that is necessary to implement each strategy. Next we briefly describe
the responsibilities of each of the participating classes.

CachingStrategy

CachingStrategy is the base class of all caching strategies: it defines a skeleton of abstract methods
that each subclass must implement in reaction to the happenings that would be interesting for
them. Not all its methods are abstract, though. When a CachingStrategy receives an Event, it
is inspected to see if it’s an administrative event or a data event, and then lets subclasses handle
each type accordingly.

An object of the CachingStrategy class is initialized with three parameters that define the
size of the associated EventCache. After initializing it, the RoutingEngine object that will be



60 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Figure 5.18: The EventCache and EventQueue classes

monitored by the CachingStrategy is passed to the former, as well as its subscriptions and ad-
vertisements RoutingTables and the neighbor EventProcessor’s Collection. Given that the
RoutingEngine it monitors processes incoming notifications serially and in FIFO-order, same does
the CachingStrategy.

The CachingStrategy class is extended by the following classes that implement the correspond-
ing homonymous caching strategies: LocalBrokerCaching, BorderBrokerCaching and MergingCaching
(see Fig. 5.19).

LocalBrokerCaching

A LocalBrokerCaching object encapsulates the caching strategy described in Section 4.4.1 (page
28). Within this strategy, data Events are only stored at the LocalEventBroker. As such, the
strategy only works in conjunction with a deployment of the Flooding routing algorithm, which
doesn’t forward the subscriptions and unsubscriptions into the broker’s network. Hence, this strat-
egy neither needs to handle administrative events.

The main work resides before a subscription is about to be processed by a RoutingEngine. The
strategy extracts the PastBound information attached to the issued Subscription, which serves as
a constrain in the search of buffered notifications. The received Subscription is processed by the
caching data structure (i.e., indexed if it doesn’t contain an identical one, etc.). Whether enough
or not to fulfill the request, locally stored events that match the filter are delivered back to the
client. Then, the subscription process proceeds as normal, i.e., simply registering an appropriate
RoutingEntry at the local RoutingTable.

Additionally, before an unsubscription issued by a client is about to be processed by the
RoutingEngine, it is processed by the caching data structure, disposing the respective entry.



5.2. DESIGN AND IMPLEMENTATION WITH AOP 61

Figure 5.19: The CachingStrategy class hierarchy

BorderBrokerCaching

A BorderBrokerCaching object encapsulates the caching strategy described in Section 4.4.2 (page
31). Within this strategy, data Events are only stored at the Border Broker. This strategy only
works in conjunction with a deployment of the SimpleRouting routing algorithm, which ensures
that every (un)subscription will be forwarded to the Border Broker2.

Since data events are stored at the Border Broker’s EventRouter, also replies are assembled
there. Replies are objects of class Reply, which in turn is a subclass of the AdminEvent class.
A Reply object might contain an arbitrary number of data Events requested by a client. In the
meantime between a reply is requested and it effectively arrives, a blocking mechanism is performed
at the LocalEventBroker. This blocking mechanism guarantees that the bootstrapping delay of a
consumer is no larger than without the caching functionality in the worst and better in the average
case.

Several helper methods aid in the process of supporting this behavior, such as the merging of
the received reply with the notifications received in the meantime, the preparation of the reply
itself, etc.

MergingCaching

A MergingCaching object encapsulates the caching strategy described in Section 4.4.3 (page 35).
In its pure version, this strategy works in conjunction with a deployment of the SimpleRouting
routing algorithm.

In contrast with the previous strategies that extracted the PastBound information from the
Subscription at the Local Event Broker or Border Broker (respectively), this strategy permits the

2In fact, SimpleRouting floods (un)subscriptions across the network’s brokers.



62 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

attached information to flow along with the subscription forwarding process in order to allow other
Inner Brokers to register the request and cache matching notifications. This further complicates
the reply mechanism since an EventRouter might ask several neighbor brokers for a reply, hence
this must be properly managed. With this purpose, each queried broker is registered in the held
reply. Later as their replies arrive, they are merged in a first-come-first-serve basis. When the
last reply arrives (or alternatively, if there are no neighbor brokers to query), the overall reply is
delivered back where it comes from. In the case that the request comes from a neighbor’s link, it is
delivered back as a Reply containing the matching notifications, otherwise (i.e., the request came
from a consumer’s link) the contained notifications are delivered one by one.

Moreover, this class also provides the caching behavior described in Section 4.4.4 (page 38).
Hence, other (more complex) routing algorithms can be used in conjunction with this strategy.
When the strategy is initialized, a boolean ForceForwards parameter is passed. As its name
indicates, it specifies whether or not to force the forwarding of requests to neighbor brokers not
chosen by the routing algorithm (e.g., CoveringRouting). In such case, to each non-selected
neighbor a FetchEvent message is forwarded that explicitly indicates the request for matching
notifications. The FetchEvent class is also a subclass of the AdminEvent class, and it simply carries
the Subscription object for which events are requested, as well as the PastBound information.
When an EventRouter receives an event like this, it simply registers the subscription in the caching
data structure and prepares the reply accordingly.

Since this class shares much of the behavior of the BorderBrokerCaching class, the former
extends the latter instead of extending the CachingStrategy class directly and having to rewrite
(or scavenge) shared code.

5.3 Caching Strategies: Implementation Details

In contrast to traditional, from scratch, object-oriented designs, applying AOP is a little more
complex. Furthermore, when source code modification is not desired, the implementation task
gets even more difficult. Besides thinking in terms of types, variables, objects, inheritance and
polymorphism, we must think in terms of the existent source (e.g., adequate encapsulation through
getter and setter methods) and how to combine it using the joinpoint model that the aspect-
oriented programming language offers. This is why the richness of the joinpoint model is a key
issue in selecting an aspect-oriented implementation language in order to have the greatest possible
flexibility. In this section we describe some of the decisions that drove the implementation phase.

5.3.1 Packaging with Aspects

Originally, within Rebeca, package names are unusual: instead of e.g. org.tud.dvs.rebeca
only rebeca is used. Moreover, inner packages have been nested that group cohesive classes. For
instance, rebeca.routing groups the routing algorithms, while rebeca.network groups low level
event transport classes.

In order to accommodate the separation of aspects and components, in [5] it is suggested the
usage of UML packages. Each aspect is encapsulated within its own package, and all the function-
ality of the aspect can be modeled within the package. The big picture is shown in Figure 5.20.
For simplicity, only the most important packages are shown. The package rebeca groups the whole
system, and inner packages group semantically close elements that tend to change together. We
have imitated this grouping methodology and created the rebeca.caching package (which con-
tains the previously described classes), as well as the inner rebeca.caching.eventcache package
(which contains the caching data structure-related classes).

The package diagram also indicates that the aspects will crosscut components in the main system
at certain join points. Circles with a cross inside (to indicate their cross-cutting nature) indicate
the joinpoints. Thus the most relevant definitions of the join points are contained in brackets close
to joinpoints.



5.4. SUMMARY 63

Figure 5.20: UML package diagram extended for aspects

5.3.2 Plug-and-Play Caching

One of the issues in starting the system using an aspect, other aspect, a set of aspects, or none,
is how to specify at startup-time which classes to load, since aspect’s source code is mapped to
bytecode class files. Please note that within the AspectJ community this is another topic not yet
explored in depth.

First we must clarify that the system is compiled with an AspectJ’s own compiler, iajc, instead
of the traditional javac Java compiler. At compile time, the compiler reads a ".lst" text file which
enumerates the source code files to be compiled. Hence, in principle, the primary way to specify
which classes to build is to have several ”.lst” files and rebuilding the system with the appropriate
list. Our implementation contains two additional files:

• plain.lst, which lists whole system’s files without the rebeca.caching package (and its
rebeca.caching.eventcache package)

• aspects.lst, which lists whole system’s files with the rebeca.caching package (and its
rebeca.caching.eventcache package)

With this compilation mechanism (despite being somewhat precarious), AspectJ made it pos-
sible to cleanly modularize the caching functionality, and easily enable or disable the functionality
when desired. In practice, to further automatize the usage of these files, an ANT script was written
that allows to select which ".lst" file to use from the command line.



64 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION

Figure 5.21: Aspect visualizer weaving points

5.4 Summary

As mentioned previously, one of the major hindrances was to devise the Caching aspect with the
restriction of not modifying the existent source code. This is because there is no way (i.e., privilege)
for an aspect to access the value of a class’ private variable or invoke a private method. Hence,
if the source was not adequately encapsulated, alternative (and therefore, not so clean) accessing
mechanisms must be used. Luckily, Rebeca, and particularly the RoutingEngine class was pretty
well designed and implemented. Therefore we only had to deal with this issue at a few points.

From the aspect-oriented design and implementation point of view, we can conclude the following
benefits:

• In spite of being a crosscutting concern, we have achieved a good modularity. Since the
beginning we knew that caching was not a completely orthogonal functionality. Nevertheless
it contributed in the separation of concerns, e.g., by letting us think about the notification
service with or without the caching functionality.



5.4. SUMMARY 65

• The preexistent objects are not responsible for caching, because the Caching aspect encap-
sulates that responsibility. Their classes contain no calls to CachingStrategy methods, the
Caching aspect encapsulates those calls.

• Routing objects have no knowledge of caching, hence they are shielded from changes to
the CachingStrategy interface. Only the Caching aspect and CachingStrategy classes
are affected. If the CachingStrategy base class changes, there is no need to modify the
preexistent object classes, only the Caching aspect needs to be modified.

• Removing the caching functionality from the design is trivial: simply removing the Caching
aspect and the CachingStrategy classes (or, what is the same, the rebeca.caching package).

• Removing the Caching functionality from the notification service implementation is trivial.
The Plug-and-Play feature allows the Caching aspect to be unplugged without deleting it.
Compiling with or without the aspect turns caching on or off, without editing classes and
with no runtime cost. This also saves debugging code between uses.

Finally, it is worth mentioning a word about the implementation platform. Several were analyzed
that support aspect-oriented software development (e.g., Borland’s JBuilder plugins and AspectJ
AJBrowser). Nevertheless, the one that is getting the most attraction in the community is the
AspectJ Development Tools (AJDT) project. AJDT is a set of plugins for the open source platform
Eclipse that provide support for aspect-oriented software development using AspectJ within the
Eclipse IDE. Some of its strengths are keyword highlighting, AspectJ code templates, a powerful
visualizer that shows the crosscutting impact of the aspects (we have replicated this information
in Figure 5.21), support for multiple build configurations within a project, and, most important, a
graphical structural members and crosscutting relationships display. This set of tools aid developers
in the design and implementation stages of a system comprising aspects.



66 CHAPTER 5. CACHING STRATEGIES: DESIGN AND IMPLEMENTATION



Chapter 6

Experimental Results

This chapter presents an evaluation of the implemented caching strategies presented in the previous
chapter. The evaluation focuses on the characteristics of the caching strategies instead of system-
specific parameters like CPU load or network bandwidth, etc. The goal here is to provide more
details on their behavior.

6.1 General Setup

This section describes the general setup of the experiments which were performed in the context of a
simulation of the enterprise application introduced in Section 1.2 (page 2). Here, clients (e.g., sales-
men) subscribe and unsubscribe to certain currency exchange information, while several publishers
of this information (e.g., financial organizations) exist. Besides the deployment configuration used
(i.e., routing algorithm, usage of advertisements, caching strategy, etc.), the results are influenced
by the characteristics of the broker topology, the consumers, and the producers. Investigating the
relations among all these parameters is beyond the scope of this work. However, this evaluation
varies some main parameters (e.g., the number of active subscriptions) and assumes a simple but
meaningful scenario in which the other parameters remain constant (see Table 6.1). In the following
subsections, the setup with respect to the mentioned parameters is described in more detail.

6.1.1 Broker Topology

The broker topology used has a major impact on any experiment. The main parameters that
characterize a broker topology are:

Number of event routers 13
Number of local event brokers 22
Number of consumers per local broker 3 (∴ 66 total)
Number of subscriptions per consumer M 1 - 500
Number of possible currency exchanges M 1 - 10
Number of past notifications required 1
Number of notification sources M 1 - 10
Number of neighbor brokers fix
Number of hierarchy levels 4
Assignment of subscriptions to consumers random
Maximum Global Buffers 151
Maximum Indexed Filters 15
Maximum Filter’s Buffers 10

Table 6.1: Fixed an varied parameters of the setup

67



68 CHAPTER 6. EXPERIMENTAL RESULTS

• the number of brokers

• the number of neighbor brokers which may be constant or vary,

• the existence or absence of connectivity cycles, and

• the diameter of the network which is the longest path connecting two arbitrary brokers.

In line with Rebeca’s evaluations, this work concentrates on a hierarchical, symmetrical, and
acyclic, i.e., tree-like, topology. To use a symmetrical topology facilitates the interpretation of the
findings, and the hierarchical structure is justified by the hierarchical structure of real networks,
like the Internet.

The tested topology has 4 levels of brokers. Starting from a single router, called the root router,
all routers except the leaves are connected to exactly 3 subordinate routers. To each non-leaf
router, a single local broker is connected, while to each leaf router, two local brokers are connected,
therefore, the used topology consists of 13 routers and 22 local brokers. In Figure 6.1 the topology
is shown. The circles refer to routers while the squares refer to local brokers.

Figure 6.1: Broker topology with 4 levels

6.1.2 Characteristics of the consumers

The characteristics of the simulated consumers have a large impact on the evaluation of the caching
strategies. Their main parameters are:

• the total number of consumers,

• the total number of subscriptions,

• the assignment of the subscriptions to the consumers (e.g., locality of interests),

• the number of notifications from the past requested with a subscription,

• the assignment of the consumers to the local brokers, and

• the rate of subscribing and unsubscribing.

In the experiments, the consumers are equally distributed among the local brokers in a fixed
relation of 3:1. The evaluation randomly chooses a consumer and a subscription type (which is
described later in Section 6.1.4), and the subscription is issued. This behavior is further repeated
500 times in order to have a good approximation of the selected parameters. Every subscription
is issued together with a QuantityBound of only 1 notification from the past. Moreover, each
consumer’s subscription remains active until all of them are issued. At the end, they are all
unsubscribed.



6.2. CACHING EFFICACY 69

6.1.3 Characteristics of the producers

The characteristics of the producers also influence the caching behavior. The main parameters of
a set of producers are:

• the absolute number of producers,

• the assignment of the advertisements to the producers,

• the assignment of the producers to the local brokers, and

• the publishing rate.

In the experiments, the number of launched producers varied according to the number of sub-
scription types in a fixed relation of 1:1. The evaluation randomly chooses a local broker for a
producer to attach to, and it starts publishing events that match the specified subscription type.
They also initially issue an advertisement if the routing algorithm enforces so. The published ex-
change rate values are also randomly chosen in the interval 3±2, nevertheless they are clearly not
of relevance.

6.1.4 Characteristics of the subscriptions and events

The characteristics of the subscriptions and events (i.e., the data model) used by subscribers and
publishers also impact the results of the evaluation. Their main parameters are:

• the type of subscriptions, and

• the distribution of the subscriptions.

Our evaluations took advantage of the concept-based addressing model. Hence, ontologies were
used to represent both subscriptions and events. In the currency exchange scenario we deal with
subscriptions which express the interest for a given currency conversion, for instance, from US
dollars to Pesos Argentinos. These currencies can be represented with a Currency ontology object,
which is a unit of measure for the monetary dimension. In turn, a currency can be expressed in a
number of ways, for example with its ISO 4217 three-letter code or a more complete, full currency
name. This meta-information is specified in an associated SemanticContext. For simplicity, only
conversions from US dollars to other currencies are considered. The evaluation distributes the
subscriptions to consumers in a random and uniform way.

Each subscription is encapsulated in a SemanticFilter object. On the other hand, pro-
ducers publish information in the form of SemanticEvents, which encapsulate (in this case) an
ExchangeRate ontology object. The latter is further composed of a FromCurrency, a ToCurrency,
a Value, and a DateTime (all of them self-explained).

6.2 Caching Efficacy

Although several metrics can be used in order measure the caching efficacy, we will concentrate on
one that allows to observe with more detail how the bootstrap latency is reduced when caching is
applied. The measure is simple: when a client issues a subscription with a given PastBound, the
system monitors whether the request from the past was fulfilled or not. With this information we
can effectively measure the percentage of subscriptions the notification service is able to attend
entirely (which we will call “caching efficacy” in this chapter). For instance, when a client issues a
subscription with a given QuantityBound of 1 notification and the system effectively delivers the
required notification from the past, it logs a special message ("1.0"). Otherwise, it logs another



70 CHAPTER 6. EXPERIMENTAL RESULTS

special message ("0.0"). This stream of special messages is then extracted from the log to form
the graphics of the current section.

With the extracted log information, other tables are constructed that reflect the percentage
of subscriptions entirely attended so far. The tables are used to construct associated histograms.
These histogram’s horizontal axes represent the number of issued subscriptions (also as we move
right along the h-axis we shift forward in time), whereas the vertical axis represents the caching
efficacy. The histograms are displayed in the Figures from 6.2 to 6.6, and we have structured them
from two points of view. First, they are arranged by caching strategy (Figures 6.2, 6.3, and 6.4),
with different series that represent the extracted log data for several numbers of subscription types
(it can be seen 1, 2, 3, 4, 5 and 10 subscription types). Then, they are arranged by number of
subscription types (Figures 6.5 and 6.6), with several series that represent the caching strategies.
This arrangement of the graphics allows us to compare the strategies and their behavior at the
same time.

It is interesting to observe how the caching efficacy gets better as the system “warms-up”.
Provided that subscriptions are not revoked until the end of the simulation, it is easy to infer that
the caching efficacy (measured as explained before) can only provide increasing values. This is of
course only achieved in the long run (i.e., for a large number of issued subscriptions), after removing
the initial random noise. The difference lies on how fast does the caching strategy start offering a
certain overall quality of service. Other things can also be inferred from these graphics which we
describe in the following subsections.

6.2.1 Local Broker Caching

As it can be seen in Figure 6.2, the caching efficacy (i.e., the number of subscriptions that the
notification service entirely attends) depends on the number of possible subscription types. The
more subscription types are considered, the less the notification service is able to attend the issued
subscriptions. For instance, with the first 100 subscriptions and only one subscription type issued
by clients, the caching efficacy grows to 55%. This performance cannot be maintained, however,
when more subscription types are considered: with 4 subscription types only a 4% caching efficacy
is achieved, whereas with 5 subscription types the system hasn’t helped bootstrapping to even 1
client.

As we said previously, in the long run all the strategies will somehow contribute in the boot-
strapping sequence, though the question is how fast should we expect the overall system to arrive
a given efficacy (i.e., with how many subscriptions).

It must be noted also that the whole series were completed, i.e., the 500 subscriptions could be
issued. This is because the LocalBrokerCaching strategy runs in conjunction with the Flooding
routing algorithm, which is the simplest one.

6.2.2 Border Broker Caching

The next experiment involved the BorderBrokerCaching strategy. Its evaluation results are shown
in Figure 6.3. In the same way as the previous strategy, the caching efficacy depends on the number
of possible subscription types. However, and as it was expected, moving the data storage point
inside the broker’s network provides a better efficacy than storing the events at the local brokers.
This is because more client’s interests are embraced by the imaginary cones at the border brokers
than at the local brokers (cf. Figure 4.11, page 32). For example, when 100 subscriptions were
issued with 1 subscription type, the efficacy has grown to 72%, whereas with 5 subscription types
the efficacy has grown to 12% (in contrast to the 0% of the previous strategy).

The chart of Figure 6.3 also strengths the idea of the long-run increasing caching efficacy value.
Moreover, because of the randomness of the simulation, the chart shows the maximum initial noise
in the 4 subscription types series. The reader should also note that the simulation could not be
completed for all the series. In fact, as more subscription types are considered, less subscriptions



6.2. CACHING EFFICACY 71

Figure 6.2: Local Broker Caching Evaluation

Figure 6.3: Border Broker Caching Evaluation

could be issued. This is in part because of the processor and physical memory requirements of the
simulation, and in part because of the SimpleRouting filter forwarding algorithm used to perform
the tests (which involves flooding the subscription across the broker’s network). This heavier
routing/caching combination behavior implies more network traffic and more helper objects than
with the previous one, which is reflected also in the time spent to finalize the tests. We will get
back to this subject later in the chapter’s summary.



72 CHAPTER 6. EXPERIMENTAL RESULTS

6.2.3 Merging Caching

The last measures taken were related to the MergingCaching strategy, which is depicted in Figure
6.4. At first sight the graphic doesn’t contribute too much, since the 6 series are overlapping each
other. Nevertheless, the fact that these series overlap has a very important consequence: the caching
efficacy is independent of the number of subscription types. This behavior was expected since, as it
was previously mentioned (cf. Section 4.4.3, page 35), the strategy’s goal is to make it independent
of the neighbor’s interests. In contrast with the other strategies whose caching efficacy depends on
the probability that a similar subscription has been issued earlier at the local or border broker, in
this strategy the efficacy only requires that a similar subscription has been issued earlier anywhere.
Hence this behavior rapidly augments the caching efficacy to almost a 100%, independently of the
neighbor client’s interests and (more important) the number of possible subscription types.

Figure 6.4: Merging Caching Evaluation

However, in order to achieve this behavior, even more processing (i.e., filter similarities checking,
message interactions, creation of helper objects, etc.) has to be performed by the brokers. Given
that series overlap each other in the chart, the next subsection proceeds by providing a comparison
between the strategies for fixed numbers of subscription types. This arrangement will let us observe
each series’ caching efficacy values separately.

6.2.4 Strategies Comparison

In this subsection we look at the extracted log data from another point of view in order to provide a
uniform comparison between the strategies. Here the caching efficacy values are arranged by number
of subscription types (for 1, 2, 3, 4, 5 and 10 subscription types). As it is expected from the previous
charts, the best efficacy is obtained by MergingCaching, followed by BorderBrokerCaching and
finally LocalBrokerCaching.

Figure 6.5 contains three comparisons, where the upper, middle and lower charts show the
caching efficacy values when 1, 2 and 3 subscription types are considered, respectively. Here, the
BorderBrokerCaching strategy displays the most fluctuating behavior. Also the difference in the
time needed to arrive to a given efficacy becomes evident: whilst MergingCaching rapidly grows
to almost a 100%, the others require at least 100 subscriptions in order to get stabilized.



6.2. CACHING EFFICACY 73

Figure 6.5: Caching Strategies Comparative Evaluation (1)



74 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.6: Caching Strategies Comparative Evaluation (2)



6.3. SUMMARY 75

In turn, Figure 6.6 displays another three comparisons, where the upper, middle and lower charts
show the caching efficacy values when 4, 5 and 10 subscription types are considered, respectively.
An interesting issue that becomes clear here is the fact of the series not being complete (i.e.,
did not finish issuing 500 subscriptions). For instance, with BorderBrokerCaching only 408, 399
and 285 subscriptions were issued respectively, whereas with MergingCaching only 261, 214 and
32 subscriptions were issued respectively (in a timely manner). This is exclusively because of
pragmatical restrictions that we describe next.

6.3 Summary

In this chapter we have showed from a different point of view how the usage of the caching strategies
minimizes the bootstraping latency. In this regard, the system can be evaluated in several ways,
for instance:

• Varying the quantity of past notifications required to bootstrap:

Although the experiments carried out in the present work only required 1 notification from
the past, this number can easily be changed to another arbitrary value. In such case, the
logged values reflect how did the caching strategy perform (i.e., how many notifications was it
able to return), in the form of fractional values in the interval [0.0, 1.0]. Hence the best-effort
metric (“request fulfilled or not”) is not appropriate here since it must deal with fractional
values. Therefore, other metrics must be devised that allow to compare, in a uniform way,
the caching strategy behavior.

• Varying the caching data structure’s size:

In the experiments we have used a combination of MaxGlobalBuffers, MaxIndexedFilters
and MaxFiltersBuffers of 151, 15 and 10, respectively. This means that all the issued
subscriptions fitted in the data structure. Nevertheless, it should be analyzed what happens
when other values for these parameters are used, or even when they are variable (i.e., each
broker has its own combination of values).

• Varying the locality of interest:

The experiments were arranged with a uniform distribution of the client’s interests. However,
it is reasonable to state that in most mobile environments this doesn’t hold. With this premise
further investigations should be made that point at correlating consumer’s behavior against
caching strategies.

Finally, it is important to remark the conditions in which the evaluations were performed.
These parameters definitively restrict the evaluation possibilities. The most important ones are
the fact of carrying out the tests in a single PC (instead of a laboratory with a networked pool
of computers), as well as the limited physical memory. After solving these issues, it would be
interesting to perform the evaluations with a higher number of issued subscriptions (instead of
500), augmenting the number of subscription types (our greatest amount was 10), and extending
the broker topology to 5 levels (instead of 4). All these factors would increase considerably the
validity of current results.



76 CHAPTER 6. EXPERIMENTAL RESULTS



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work was motivated by information-driven applications, particularly on distributed event-
based systems. Developers of such systems face up a problem found at application’s runtime startup.
These applications require an initial phase to correctly interpret the current flow of notifications
and commence normal operation, what we call bootstrapping phase. This stage is necessary in order
to bring the application into a consistent state, and during this period an event-based application
might not be able to work properly. In mobile environments this problem is aggravated. Provided
that disconnections must be considered as part of normal wireless communication, and that with
each reconnection the system must re-register the client’s subscriptions (because of a new location,
a context change, a communication failure, etc.) the problem becomes more relevant.

Considering this landscape, this work concentrates in enhancing the mobile pub/sub middle-
ware (in particular, the notification service) by reducing the bootstrapping latency. Our approach
focuses in extending the pub/sub system to store recently published notifications in caches that
are distributed in the network. In this way, during the bootstrapping phase, the system is able to
deliver the most recently published notifications, in order to minimize the bootstrapping latency.
A client application specifies how many (or how old) notifications does it need to bootstrap, and
the system uses this information in order to provide the required notifications. The approach we
have taken is limited to best-effort, since it can not guarantee all answers because this strongly
depends on the size of buffers and the traffic of messages.

We extended the system behavior by including into the notification service a component that
intervenes in the client subscription process by adding the caching functionality. By observing the
routing functionality, several caching mechanisms came to our minds that allowed to devise different
strategies. These strategies varied, for instance, in their simplicity, effectiveness of notification
fetching, memory overhead, network utilization, data access mechanisms or requirements from the
infrastructure.

The enhancement was designed to be incorporated to an open source notification service. Basi-
cally, we wanted to provide the caching functionality as an add-on. That means that we did want
to minimize changes on the source code of the notification service. In Figure 7.1 we describe the
overall proposed architecture. Our solution is composed of three layers:

• In the lower level, the Notification Service provides the core routing functionality.

• The second level is composed of the Caching concern, which basically demarcates where a
caching strategy might be applied.

• The third level is composed by a pluggable CachingStrategy that implements a defined caching
behavior. These strategies can be customized, so parameters such as MaxIndexedFilters might
be passed to the constructor when they are created.

77



78 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Figure 7.1: Schematic view of the enhanced notification service

Given this, we took advantage of aspect orientation tools in order to solve our problems: imple-
ment the caching strategies as a non-functional concern. For this purpose, we have used AspectJ as
an adequate, seamless, aspect-oriented extension to Java. Additionally, some yet non-standardized
aspect-oriented UML diagrams were used to illustrate several viewpoints of the strategies’ devel-
opment.

Finally, a practical evaluation of the implemented caching strategies was performed. The eval-
uation aimed at providing more details of the caching behavior. Many considerations must be
reasoned in preparing the tests such as the broker topology, the subscribing rate or even the data
model. However, an important factor emerged while carrying out the tests that was the number
of subscription types. This factor divided the implemented strategies into two groups: those that
depend on the number of subscription types (LocalBrokerCaching and BorderBrokerCaching)
and those who don’t (MergingCaching). The metric used in the evaluation pointed out best-effort
results only, though other metrics can be used that give insights on other aspects of the behavior.
For instance, when the number of required notifications from the past is variable, we could monitor
fractional values that represent how well did the chosen strategy perform and analyze the outcome
also in a uniform way.

7.2 Future Work

Enhancing mobile pub/sub middleware has been a major task. Each step has revealed potential
areas of future work. However, time is finite and we suffice ourselves by having arrived to results
at each stage.

With respect to the design, one of the requirements elicited in Section 4.1 (page 21) related to
the integrability was the dynamism. Our solution (described in Section 5.3.2, page 63) made use of
the words startup-time to refer the moment when the decision of deploying (or not) a given caching
strategy was taken. There, we made clear that in order to incorporate the caching functionality,
the compilation process must participate in order to weave the aspect to the rest of the system.
On the other hand, if we think of a production environment, it would be nice to be able to take out
the caching functionality (as well as any other add-ons) from the notification service. The basic
idea is to allow the service administrator to dynamically choose to insert or remove the caching
functionality on-line, i.e, at run-time. Dynamic AOP can give us a hand here.

Several mechanisms currently exist, while others are still in research, that allow the modification
of an application behavior dynamically. AOP’s off-line weaving is performed at application build



7.2. FUTURE WORK 79

time (like AspectJ does). Dynamic AOP’s online weaving can be achieved in several ways: weaving
at class load time (i.e., at application deployment time), weaving at runtime (i.e, in a running
application), or even through runtime inspection and monitoring (i.e., using the Java Virtual Ma-
chine Debug Interface [3]). Finding new architectural means that allow to implement this dynamic
behavior is a very rich area of future work, and it should be considered for other QoS issues on
publish/subscribe notification services.

Additionally, it would be interesting to investigate how difficult it is to try to use the same
caching design over other (open source) notification services. Commonly, adding an indirection
level in traditional systems solves this kind of situations. Nevertheless, the layer we are talking
of is mainly an aspect. Making the layer more generic in order to deploy it over different systems
is not just finding a new set of pointcuts. The strategies’ requirements from the infrastructure
must be compared against the notification service characteristics to see if they are compatible. For
example, broker topologies with cycles, which diminish single points of failure, are not supported
by the developed strategies. This may influence an adaptation of the caching layer making it more
generic and usable in other contexts.

The work presented in Chapter 6 can be seen as a starting point for several duties. On one
hand, an initial task would be developing analytical models that allow to foresee the results to be
expected and why. On the other hand, extending the tests to perform large scale simulations is
necessary. In principle, the biggest problem is to have hardware available to perform the tests.
This would increase the validity of current results.

Finally, and as indicated in [15], trust and security are not part of the pub/sub paradigm.
Security is a separate aspect of publish/subscribe, outside of the pure ability to convey messages.
To achieve greater flexibility at implementing security aspects, the employment of aspect-oriented
programming techniques and AspectJ was proposed. This posses two problems: First, and as it
was stated in Section 5.1.2 (page 47), when more than one aspect participates in the design of
a system, it must be determined which aspect has the highest priority. A second issue is the
interaction between the caching and security concerns. Not only a priorization must be defined to
establish how the aspect composition process must weave the aspects to the components, but the
interaction between them is. For example, security policies might enforce events to be delivered
within its time to live period. Nevertheless, the events might be cached somewhere by a strategy
for longer periods and later delivered to a newly subscribed client. Another example would be a
caching strategy trying to extract notifications from private subnets in order to fulfill a consumer
request from the past. Hence, mechanisms must be devised that allow extending the notification
service while considering the interactions between other existing or incoming concerns.



80 CHAPTER 7. CONCLUSIONS AND FUTURE WORK



Appendix A

Aspect Oriented Software
Development

Programming languages evolved from machine code and assembly languages to a variety of paradigms
such as formula translation, procedural programming, functional programming, logic programming,
and object-oriented programming. This evolution has improved the ability to achieve a clear sepa-
ration of concerns, or the ability to identify, encapsulate, and manipulate only the parts of software
that are relevant to a particular concept, goal, or purpose. Nowadays, Object-Oriented Program-
ming (OOP) has become the dominant programming paradigm where a problem is decomposed
into objects that abstracts behavior and data in a single entity.

Nevertheless, although OOP technologies offers the ability for separation of concerns, it’s still
difficult to model and implement crosscutting concerns. This is because OOP tries to localize
concerns which do not fit naturally into a single program module, or even several closely related
program modules. Concerns can range from high-level notions such as security and quality of
service to low-level notions like buffering, caching, and logging. They can also be functional, such
as business logics, or non-functional, such as synchronization. Some concerns, such as XML parsing
and URL pattern matching, usually couple with a few objects, yet achieve good cohesion. Other
concerns, such as logging, will intertwine with many highly unrelated modules.

A.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) has been proposed as a technique for improving separation
of concerns in software. AOP builds on previous technologies, including procedural programming
and OOP, that have already made significant improvements in software modularity. The central
idea of AOP is that while the hierarchical modularity mechanisms of object-oriented languages are
extremely useful, they are unable to modularize all concerns of interest in complex systems. Instead,
in the implementation of any complex system, there will be concerns that inherently crosscut the
natural modularity of the rest of the implementation. AOP does for crosscutting concerns what
OOP has done for object encapsulation and inheritance: it provides language mechanisms that
explicitly capture crosscutting structure. This makes it possible to develop crosscutting concerns
in a modular way, and achieve the usual benefits of improved modularity: simpler code that is easier
to develop and maintain, and that has greater potential for reuse. A well-modularized crosscutting
concern is called an aspect [23].

A.2 AspectJ

AspectJ is a simple and practical Aspect-Oriented extension to Java. With just a few new con-
structs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
In AspectJ’s join point model the following terms are used:

81



82 APPENDIX A. ASPECT ORIENTED SOFTWARE DEVELOPMENT

• join points are well-defined points in the execution of a program;

• pointcuts are collections of join points;

• advice are special method-like constructs that can be attached to pointcuts; and

• aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and
ordinary Java member declarations.

AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java
development environments make it possible to browse the crosscutting structure of aspects in the
same way one browses the class inheritance structure. For instance, to implement the prototypical
strategies of this thesis, IBM’s open source Eclipse platform was used, along with a plug-in that
adds the AOP functionality, called Eclipse AspectJ Development Tool. Several examples show that
AspectJ is powerful, and that programs written using it are easy to understand [23]. Next we
provide an overview of how an aspect is described in terms of more elementary components.

A.2.1 Joinpoints and Pointcuts

Consider the following Java class:

class Point {
private int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

void setX(int x) { this.x = x; }
void setY(int y) { this.y = y; }

int getX() { return x; }
int getY() { return y; }

}

In order to get an intuitive understanding of AspectJ’s joinpoints and pointcuts, we go back to
some of the basic principles of Java. Consider the following method declaration in class Point:

void setX(int x) { this.x = x; }

This piece of program says that when method named setX with an int argument is called
on an object of type Point, then the method body { this.x = x; } is executed. Similarly,
the constructor of the class states that when an object of type Point is instantiated through a
constructor with two int arguments, then the constructor body { this.x = x; this.y = y; }
is executed.

One pattern that emerges from these descriptions is “When something happens, then something
gets executed”.

In object-oriented programs, there are several kinds of things that happen that are determined
by the language. We call these the Java joinpoints. Joinpoints consist of things like method
calls, method executions, object instantiations, constructor executions, field references and handler
executions. Pointcuts pick out these joinpoints.

Pointcut definitions consist of a left-hand side and a right-hand side, separated by a colon. The
left-hand side consists of the pointcut name. The right-hand side consists of the pointcut itself. For
example, the pointcut picks out each call to setX(int) or setY(int) when called on an instance
of Point:



A.3. AOP AND UML 83

pointcut setter(): target(Point) &&
(call(void setX(int)) ||
call(void setY(int)));

As it can be seen, the pointcut is defined in terms of the composition of other (in this case
primitive) pointcuts. The composition can be achieved by means of the logical operators and
(spelled &&), or (spelled ||), and not (spelled !). This allows the creation of very powerful pointcuts
from the simple building blocks of primitive pointcuts.

The left-hand side definition of a pointcut can also consist of the pointcut parameters (i.e. the
data available when the events happen). The previous sample pointcut is given the name setters
and no parameters on the left-hand side. An empty parameter list means that none of the context
from the join points is published from this pointcut. But consider another version of version of this
pointcut definition:

pointcut setter(Point p): target(p) &&
(call(void setX(int)) ||
call(void setY(int)));

This version picks out exactly the same joinpoints. But in this version, the pointcut has one
parameter of type Point. This means that any advice that uses this pointcut has access to a Point
from each joinpoint picked out by the pointcut. Inside the pointcut definition, this Point named
p is available, and according to the right-hand side of the definition, that Point p comes from the
target of each matched joinpoint.

A.3 AOP and UML

As AOP techniques move into mainstream use, it is likely that more software developers will be
modelling systems with aspect-oriented features using the Unified Modelling Language (UML).
Why choose UML to visualize information? Because it provides a single, standardized, powerful
language for precisely describing systems design and software design, which can be interchanged
with other UML users.

While in the last years the implementation level has received most of the research efforts (since
without programming languages to support aspects, there was no reason to consider other aspect-
oriented development), very less work exists at early stages like requirements engineering, analysis
and design. Nevertheless, some extensions to the classical UML notation were used in these stages
in order to accommodate aspects, as proposed by the current literature:

• In order to handle the separation of crosscutting concerns at requirements level using UML,
we can identify and specify crosscutting concerns in separate modules, so that localization
and hence, reusability and maintainability can be promoted [27].

• At the analysis and design level, [5] proposes Aspect Packages, Class Diagrams for Aspects,
Interaction Diagrams for Aspects (that is, sequence and collaboration diagrams), Statecharts
with Aspects and more. At a lower level, [34] proposes the Aspect-Oriented Design Model,
which allows a more precise specification of the crosscutting elements and other diagrams.
In [35], the representation of joinpoints using UML is discussed. They propose the usage of
UML links in sequence interaction diagrams to specify the behavioral crosscutting. We prefer
the usage of simple dynamic call graph diagrams (cf. [21]), though.

• In the design level (but rather oriented to the implementation/coding phase), [36] propose
an extension to the UML to support aspects properly without breaking the existing UML
specification and an XML-based aspect description language.

Although these tools have not yet been defined as UML 2.0 standards or been approved by the
OMG (at least at the moment of writing this thesis), what we expect from them is to get a better
way to express the ideas applied throughout this work.



84 APPENDIX A. ASPECT ORIENTED SOFTWARE DEVELOPMENT



Bibliography

[1] José Antollini, Mario Antollini, Pablo Guerrero, and Mariano Cilia. Extending Rebeca to Sup-
port Concept-based Addressing. Technical report, First Argentine Symposium on Information
Systems, Córdoba, Argentina, September 2004.

[2] AspectJ Team. AspectJ Programming Guide. URL:
http://aspectj.org/doc/dist/progguide/index.html, September 2001.

[3] Swen Aussmann and Michael Haupt. Axon – Dynamic AOP through Runtime Inspection
and Monitoring. First Workshop on Advancing the State-of-the-Art in Run-Time Inspection
(ASARTI’2003), April 2003.

[4] Mario Barbacci, Mark H. Klein, Thomas A. Longstaff, and Charles B. Weinstock. Quality
Attributes. Technical Report CMU-SEI-95-TR-021, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, December 1995.

[5] Mark Basch and Arturo Sanchez. Incorporating Aspects into the UML. In Third International
Workshop on Aspect-Oriented Modelling (AOSD’2003), Boston, USA, March 2003.

[6] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. SEI Series in
Software Engineering. Addison-Wesley, 5th edition, May 1999.

[7] J. Bates, J. Bacon, K. Moody, and M. Spiteri. Using events for the scalable federation of
heterogeneous components. In Proceedings of the 8th ACM SIGOPS European Workshop:
Support for Composing Distributed Applications, Sintra, Portugal, September 1998.

[8] C. Bornhövd, M. Cilia, C. Liebig, and A. Buchmann. An infrastructure for Meta-Auctions. In
Second International Workshop on Advance Issues of E-Commerce and Web-based Information
Systems (WECWIS’00), San José, California, USA, June 2000.

[9] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Content-Based Address-
ing and Routing: A General Model and its Application. Technical Report CU-CS-902-00,
Department of Computer Science, University of Colorado, January 2000.

[10] Antonio Carzaniga and Alexander L. Wolf. Content-Based Networking: A New Communi-
cation Infrastructure. NSF Workshop on an Infrastructure for Mobile and Wireless, October
2001.

[11] M. Cilia. An Active Functionality Service for Open Distributed Heterogeneous Environments.
Ph.D. Thesis, Department of Computer Science, Darmstadt University of Technology, Darm-
stadt, Germany, August 2002.

[12] Mariano Cilia, Ludger Fiege, Christian Haul, Andreas Zeidler, and Alejandro Buchmann.
Looking into the past: Enhancing mobile publish/subscribe middleware. In Proceedings of
the 2nd International Workshop on Distributed Event-Based Systems (DEBS’03), San Diego,
California, June 2003. ACM Press.

85



86 BIBLIOGRAPHY

[13] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS. IEEE Trans. Softw.
Eng., 27(9):827–850, 2001.

[14] Ludger Fiege, Gero Mühl, and Alejandro P. Buchmann. An Architectural Framework for
Electronic Commerce Applications. In Informatik 2001: Annual conference of the German
Informatics Society (GI). ACM, 2001.

[15] Ludger Fiege, Andreas Zeidler, Alejandro Buchmann, Roger Kilian-Kehr, and Gero Mühl.
Security aspects in publish/subscribe systems. In Third Intl. Workshop on Distributed Event-
based Systems (DEBS’04), May 2004.

[16] M. Franklin and S. Zdonik. Data in Your Face: Push Technology in Perspective. In Proceedings
ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD 98), pages 516–519, Seattle,
WA, USA, June 1998. ACM Press.

[17] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code Mobility.
IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley, 15th
edition, September 1998.

[19] Kim Haase. Java Message Service API Tutorial. Sun Microsystems, 2002.

[20] Dennis Heimbigner. Adapting publish/subscribe middleware to achieve Gnutella-like func-
tionality. In Coordination Models, Languages and Applications, Special Track at 2001 ACM
Symposium on Applied Computing (SAC 2001), pages 176–181. ACM Press, 2001.

[21] Erik Hilsdale and Gregor Kicsales. Aspect-Oriented Programming with AspectJ. Xerox Corp,
July 2004.

[22] J. Kaiser and M. Mock. Implementing the Real-Time Publisher/Subscriber Model on the
Controller Area Network (CAN). In Second Int’l Symposium on Object-Oriented Distributed
Real-Time Computing Systems, 1999.

[23] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An Overview of AspectJ. Lecture Notes in Computer Science, 2072:327–355, 2001.

[24] M. Langheinrich, F. Mattern, K. Romer, and H. Vogt. First steps towards an Event-based in-
frastructure for smart things. In Ubiquitous Computing Workshop (PACT 2000), Philadelphia,
PA, USA, October 2000.

[25] C. Liebig, B. Boesling, and A. Buchmann. A notification service for next-generation IT systems
in air trafic control. In Proceedings GI-Workshop’02: Multicast-Protokolle und Anwendungen,
Braunschweig, Germany, May 1999.

[26] C. Mascolo, W. Emmerich, and L. Capra. Middleware for Mobile Computing, volume 2497,
pages 20–58. E. Gregori, G. Anastasi and S. Basagni, ACM Press, Springer Verlag edition,
2001.

[27] Joao Araujo Moreira, Ana Moreira, Isabel Brito, and Awais Rashid. Aspect-Oriented Require-
ments with UML. Workshop on Aspect-Oriented Modelling with UML (held with UML 2002),
2002.

[28] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt
Univ. of Technology, http://elib.tu-darmstadt.de/diss/000274/, 2002.



BIBLIOGRAPHY 87

[29] Gero Mühl, Ludger Fiege, Felix C. Gärtner, and Alejandro P. Buchmann. Evaluating Advanced
Routing Algorithms for Content-Based Publish/Subscribe Systems. In Proc. MASCOTS 2002,
2002.

[30] Object Management Group. CORBA Notification Service Specification. Technical report
telecom/98-06-15, Object Management Group (OMG), Fammingham, MA, May 1998.

[31] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus — An Archi-
tecture for Extensible Distributed Systems. In Barbara Liskov, editor, Proceedings of the 14th
Symposium of Operating Systems Principles (SIGOPS), pages 58–68, Asheville, NC, USA,
December 1993. ACM Press.

[32] Abraham Silberschatz and Peter Baer Galvin. Operating Systems Concepts. World Student
Series. Addison-Wesley, John Wiley and Sons, Inc., 5th edition, 1998.

[33] N. Skarmeas and K. Clark. Content-based routing as the basis for intra-agent communication.
In Proceedings of the 5th International Workshop on Intelligent Agents V: Agent Theories,
Architectures, and Languages (ATAL-98), Berlin, Germany, July 1999.

[34] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing Aspect-Oriented Crosscut-
ting in UML. In Workshop on Aspect-Oriented Modeling with UML, AOSD, Enschede, The
Netherlands, April 2002.

[35] Dominik Stein, Stefan Hanenberg, and Rainer Unland. On Representing Join Points Using
UML. In Second International Workshop on Aspect-Oriented Modeling with UML, September
2002.

[36] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML with Aspects: Aspect Support in
the Design Phase. In 3rd Aspect-Oriented Programming (AOP) Workshop at 13th European
Conference on Object Oriented Programming (ECOOP’99), pages 299 – 300, Lisbon, Portugal,
June 1999.


